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Abstract

In an !1{saturated nonstandard universe a cut is an initial segment of the
hyperintegers, which is closed under addition. Keisler and Leth in [KL] intro-
duced, for each given cut U , a corresponding U{topology on the hyperintegers
by letting O be U�open if for any x 2 O there is a y greater than all the ele-
ments in U such that the interval [x�y; x+y] � O. Let U be a cut in a hyper-
�nite time line H, which is a hyper�nite initial segment of the hyperintegers. A
subsetB ofH is called a U�Lusin set inH ifB is uncountable and for any Loeb{
Borel U�meager subset X of H, B

T
X is countable. Here a Loeb{Borel set is

an element of the �{algebra generated by all internal subsets ofH. In this paper
we answer some questions of Keisler and Leth about the existence of U�Lusin
sets by proving that: (1) If U = x=N = fy 2 H : 8n 2 N (y <x=n)g for
some x 2 H, then there exists a U�Lusin set of power � if and only if there
exists a Lusin set of the reals of power �; (2) If U 6= x=N but the coinitiality
of U is !, then there are no U�Lusin sets if CH fails; (3) Under ZFC there
exists a nonstandard universe in which U�Lusin sets exist for every cut U with
uncountable co�nality and coinitiality; (4) In any !2�saturated nonstandard
universe there are no U�Lusin sets for all cuts U except U = x=N .

Throughout this paper we work within !1�saturated nonstandard universes. We

let M be a nonstandard universe and �
N be the set of all hyperintegers in M which

contains N , the set of all standard positive integers. Let H 2 �
N � N ; we call

H = fn 2 �
N : n � H g a hyper�nite time line or a hyperline for short. We always

let H be the largest element of H. Let [a; b] = fx 2 H : a � x � bg be an interval in

H and [r] = maxfn 2 �
N : n � rg for any hyperreal r.

A notion of Loeb measure for H, which is the standard part of the countably

additive extension of the counting measure on H, was introduced by P. Loeb (cf.[Lo])

as a counterpart of Lebesgue measure for the reals. Recently H. J. Keisler and S. Leth

(cf.[KL]) introduced U�topologies on H for any cuts U as an analogue of the order

topology on the reals. They discussed the relationship between U�meager sets and

Loeb measure zero sets and the existence of Loeb{Sierpi�nski sets and U�Lusin sets.

They listed many questions at the end of the paper. In this paper we discuss some of

those questions about the existence of U�Lusin sets. Most of the questions discussed

here were motivated by the results of [KL], [M1] and [M2]. For background in model
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theory see Chang and Keisler [CK], for background in nonstandard universes and the

Loeb measure see Stroyan and Bayod [SB], for standard Sierpi�nski sets and Lusin sets

see [M1] and for Loeb{Borel sets and countably determined sets see [KKLM]. This

paper was developed under the supervision of H. J. Keisler, to whom the author is

deeply grateful.

Throughout this paper we let card(A) mean external cardinality of A and �card(A)

mean internal cardinality of A if A is an internal set. When A is hyper�nite, �card(A)

is a hyperinteger.

Let us recall that a cut in H is an initial segment of H which is closed under

addition. A cut must be external. Let U be a cut in H. A subset O of H is called

U�open if for any x 2 O there is a y 2 H � U such that [x � y; x + y] � O. All

U�open sets form a U�topology on H. A subset of H is called U�nowhere dense

(U�meager) if it is nowhere dense (meager) in the U�topology.

A subset B of H is called a Loeb{Sierpi�nski set if B is uncountable and for each

set X of Loeb measure zero, B
T
X is countable

Let U be a cut in H. We recall that a subset B of H is called a U�Lusin set if B

is uncountable and for every Loeb{Borel U�meager set X, B
T
X is countable. (A

subset of H is called a Loeb{Borel set if it is an element of the ��algebra generated

by all internal subsets of H.)

We restrict the X above to be a Loeb{Borel set because otherwise U�Lusin sets

will not exist for most of the cuts U by Proposition 8.3 in [KL].

Now we list some results from [KL] and [M2], which motivate the questions dis-

cussed here.

[KL, Proposition 8.9]. Loeb{Sierpi�nski sets do not exist in any !2�saturated

nonstandard universe.

[KL, Proposition 8.10]. (CH). Assume that the family of all internal subsets of

H has cardinality !1 . Let U be a set of cuts which is well ordered by the relation �.

Then there is a set B � H which is U�Lusin for every cut U 2 U . In particular, for

each cut U there is a U�Lusin set.

[M2, Theorem 13]. It is consistent with ZFC that there exists a Sierpi�nski set

of the reals, but no Loeb{Sierpi�nski set in any !1�saturated nonstandard universe.

This shows that Loeb{Sierpi�nski sets are harder to get than Sierpi�nski sets of the

reals.
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[M2, Theorem 16]. It is relatively consistent with ZFC that the continuum hy-

pothesis is false but in some !1�saturated universe there is a Loeb{Sierpi�nski set.

The questions follow:

(1) Are there models of ZFC in which Lusin sets of the reals exist but there are

no nonstandard universes in which U�Lusin sets exist?

(2) Can U�Lusin sets exist in an !2�saturated nonstandard universe?

(3) Can there ever exist U�Lusin sets of cardinality !2 ?

Let U be a cut in H and x 2 H. The following are cuts:

xU = fy 2 H : 9z 2 U (y � xz)g

x=U = fy 2 H : 8z 2 U (y � x=z)g

Let U be a cut in H; we let

cf(U), the co�nality of U , = minfcard(F ) : F � U and F is co�nal in Ug.

ci(U), the coinitiality of U , = minfcard(F ) : F � H � U and F is coinitial in

H� Ug.

U is called a (�; �) cut ((� �;� �) cut) if cf(U) = � and ci(U) = � (cf(U) � �

and ci(U) � �).

Theorem 1 Let U = x=N for some x 2 H. Then there exists a U�Lusin set of

cardinality � if and only if there exists a Lusin set of the reals of cardinality �.

We need two lemmas before we prove this theorem.

Lemma 1 (Keisler and Leth) There exists an H=N�Lusin set of cardinality � im-

plies that there exists a Lusin set of the reals of cardinality �.

Proof: See [KL, Proposition 8.4]. 2

Lemma 2 There exists a Lusin set of the reals of cardinality � implies that there

exists an H=N�Lusin set of cardinality � in H.

Proof: Let B0 be a Lusin set of the reals and card(B0) = �. We can assume that

B0 � I = [0; 1], the unit interval of the reals. For any x 2 H we let st(x) be the

standard part of x=H. Then st is a function from H to I and jst(x) � st(y)j = 0 i�

jx� yj 2 H=N .
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For each b 2 B0 let xb 2 H such that st(xb) = b and B = fxb : b 2 B0g. We claim

that B is an H=N�Lusin set and card(B) = �.

Let X be any H=N�nowhere dense set in H (X is not necessarily a Loeb{Borel

set) and X 0 = fst(x) : x 2 Xg � I.

Claim: X 0 is nowhere dense in I.

Proof of the claim: Let a0; b0 2 I and a0 < b0. Let a; b 2 H such that st(a) = a0

and st(b) = b0. Since jb � aj 62 U and X is U�nowhere dense in H, there exist

�c; �d 2 H such that a < �c < �d < b, j �d� �cj 62 U and [�c; �d]
T
X = ;. Let c = �c+[

�d��c
3
] and

d = �c+ [2(
�d��c)
3

]. Let c0 = st(c) and d0 = st(d). Then a0 � st(�c) < c0 < d0 < st( �d) � b0.

Hence (c0; d0)
T
X 0 = ;. This ends the proof of the claim.

X 0
T
B0 is countable since B0 is a Lusin set in I. And X

T
B is also countable

because st is one to one on B. card(B) = � since st00B = B0. 2

Proof of Theorem 1:

\(=": There exists a Lusin set of cardinality � in I ) There exists an

x=N�Lusin set in [1; x] by Lemma 2 ) There exists an x=N�Lusin set in H.

\=)": Let x 2 H�N . It is su�cient to prove that there exists an x=N�Lusin

set of cardinality � in H implies that there exists an x=N�Lusin set of cardinality �

in [1; x], by Lemma 1.

Let B � H be an x=N�Lusin set and card(B) = �.

For any y 2 B there exists a z 2 H
S
f0g such that xz < y � x(z + 1). Let

ay = y � xz, then A = fay : y 2 Bg � [1; x].

Claim: A is an x=N�Lusin set in [1; x] and card(A) = �.

Proof of Claim: If card(A) < � then 9a 2 A such that card(fy 2 B : ay =

ag) > !.

Let Aa = fa + xz : z 2 Hg
T
H, then Aa is internal and x=N�nowhere dense. If

ay = a for some y 2 B, then y � xz = a =) y 2 Aa, hence card(Aa

T
B) > !. But

B is an x=N�Lusin set, a contradiction.

Let S � [1; x], we de�ne

F (S) = fs+ xz : s 2 S and z 2 H
S
f0gg

T
H.

Then for any S � [1; x] and z 2 H
S
f0g, F (S)

T
[xz + 1; x(z + 1)] = fs + xz :

s 2 Sg
T
H. So S � [1; x] is x=N�nowhere dense =) F (S) is x=N�nowhere dense
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in H and S � [1; x] is internal =) F (S) is internal. Besides, F preserves union,

intersection and complement. So if S � [1; x] is a Loeb{Borel set, then F (S) is also

a Loeb{Borel set and S and F (S) are at the same level in the Loeb{Borel hierarchy.

If A is not an x=N�Lusin set in [1; x], then there exists a Loeb{Borel x=N�meager

set S in [1; x] such that S
T
A is uncountable. For any a 2 S

T
A there is a y 2 B

and z 2 H
S
f0g such that a = ay = y � xz. Then y = a + xz 2 F (S), which

implies that y 2 F (S)
T
B. Hence fay : y 2 F (S)

T
Bg is uncountable, so F (S)

T
B

is uncountable. But F (S) is a Loeb{Borel x=N�meager set and B is an x=N�Lusin

set, a contradiction. 2

Remark: Let us callB a strong U�Lusin set ifB is uncountable and has countable

intersection with every U�meager (without Loeb{Borel) set. Then in the case of

U = x=N the existence of U�Lusin sets and the existence of strong U�Lusin sets are

equivalent.

Theorem 2 Assume 2! > !1 . Let Ube a cut in H such that ci(U) = ! and U 6= x=N

for any x 2 H. Then there are no U�Lusin sets in H.

Proof: Let B � H be a U�Lusin set with cardinality !1 . Let hxn : n 2 !i be a

decreasing sequence inH such that it is coinitial inH�U and for each n 2 ! xn=xn+1

is in�nite. For any n 2 ! there is an an 2 H � N such that anxn+1 < xn=2. For any

y 2 [1; an], let

Ay =
[
f [ (zan + y � 1)xn+1 + 1; (zan + y)xn+1]

\
H : z 2 H

[
f0gg:

Then Ay is internal and Ay

T
Ay0 = ; if y 6= y0.

Since card(B) = !1 and card([1; an]) = 2! > !1, then there exists a yn 2 [1; a]

such that Ayn

T
B = ;.

Let

F = H�
[

n2!

Ayn =
\

n2!

(H� Ayn):

Then F is a �0
1 U�nowhere dense set since every interval of length xn has a subinterval

of length xn+1 from Ayn which is disjoint from F . But B � F . This contradicts that

B is a U�Lusin set. 2

Theorem 3 (ZFC) There exists a nonstandard universe M with a set B in each

hyperline H 2M such that B is a U�Lusin set for every (� !1;� !1) cut U in H.
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We need a lemma from [Zi].

Lemma 3 (B. �Zivaljevi�c) Let U be a (� !1;� !1) cut in H. Then every count-

ably determined U�nowhere dense set can be covered by countably many internal

U�nowhere dense sets.

Proof: See [Zi, Proposition 1.2]. 2

Remark: Every Loeb{Borel set is countably determined. (cf. [KKLM])

Proof of Theorem 3: Let M0 be the standard superstructure. We build an

!1 + 1�elementary chain of nonstandard universes by taking

M�+1
�=M��

� =F�

for some �� � the cardinality of the family of all internal subsets of �N� inM� . Here
�
N� is the set of all hyperintegers in M� and F� is a regular ultra�lter over �� and

M�
�=
[

�<�

M�

if � is a limit ordinal below !1+1. The !1�saturated nonstandard universe we want

is M!1 . For any H 2 �
N!1 � N we want to �nd a U�Lusin set in H. Without loss

of generality we assume H 2 �
N1 . For all � < !1, let ��(x) be the type of formulas

fx 62 A : A � H is M�{internal U�nowhere dense for some cut U in H
T

�
N�g

S
fx � H g.

��(x) is �nitely satis�able in M� and card(��(x)) � �� . By the saturation of the

��{regular ultrapower overM� there exists an x� 2 �
N�+1 realizing ��(x) inM�+1 .

Claim: fx� : � < !1g is a U�Lusin set for any (� !1;� !1) cut U in H.

Proof of the claim: It su�ces to prove that fx� : � < !1g has countable intersec-

tion with every internal U�nowhere dense set by Lemma 3.

Let A be an internal U�nowhere dense subset of H in M!1 . Then 9� < !1(A 2

M�). Let U� = fx 2 �
N� : x 2 Ug. Then U� is a cut in �

N�
T
H. Now A is

U��nowhere dense because for any interval I of length y such that y 2 H
T
M� and

y 62 U�,

z0 = maxfz 2 H : there is a subinterval J of I such that �card(J) = z and J
T
A = ;g
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is in M� and is not in U . Hence x� 62 A if � � �. 2

Remarks: (1) In H there are (� !1;� !1) good and bad cuts. (A cut U in H is

called good if there is a U{meager set in H with Loeb measure one. Otherwise U is

called bad.)

(2) In some universes U�Lusin sets are easier to get than Lusin sets of the reals

for every (� !1;� !1) cut U .

Theorem 4 For each hyperline H in an !2�saturated nonstandard universe, if U 6=

x=N for all x 2 H, then there are no U�Lusin sets in H.

Before the proof we need one more de�nition and a lemma by Keisler and Leth.

Let A be an internal subset of H and x 2 H. De�ne

gA(x) = maxfb 2 H : for every interval I of length � x, there is a

subinterval J of I such that �card(J) � b and J
T
A = ;, or b = 1g.

gA is an internal function if A is internal.

It is easy to see that if A � H be internal, then A is U�nowhere dense i�

8x 62 U(gA(x) 62 U).

Lemma 4 (Keisler and Leth) In any !2�saturated nonstandard universe, if cf(U) =

!, then there are no U�Lusin sets.

Proof: Let U be any cut in H and x 2 H. We call the set fy 2 H : jy� xj 2 Ug,

the U�monad of x. If cf(U) = !, then every U�monad is a �0
1 set and U�nowhere

dense.

Assume that there is a U�Lusin set B. Then the intersection of B and each

U�monad should be at most countable. Since B is uncountable, we can assume that

B has at most one element in every U�monad.

Since cf(U) = !, and by !1�saturation, there is an internal sequence hxn : n <

ai for some a 2 H � N such that hxn : n � !i is increasing, co�nal in U and

8n < a (xn+1=xn > 2n+1). Let �(X) be the type

f8n 2 [1; a] (gX(xn+1) � xn)g
[
fF � X : F 2 [B]<!g:

Claim: �(X) is �nitely satis�able.
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Proof of the claim: Let F be any �nite subset of B. Since B has at most one

element in each U�monad, then z0 = minfjx � yj : x; y 2 F; x 6= yg 62 U . Let I be

any interval of H such that �card(I) � xn+1. If xn+1 2 U (that means n is �nite),

then there exists a subinterval J of I such that �card(J) � xn and J
T
F = ; because

z0 62 U and xn+1=xn � 2n+1 > 2. If xn+1 62 U (that means n is in�nite), then I can

be divided into in�nitely many disjoint subintervals of length � xn because xn+1=xn

is in�nite. One of those subintervals should be disjoint from F since F is �nite.

So gF (xn+1) � xn for every n 2 [1; a]. This ends the proof of the claim.

Since card(�(X)) < !2, there is an internal set A which is U�nowhere dense and

B � A, a contradiction. 2

Proof of Theorem 4: We prove the theorem case by case.

Assume that B = fx� : � 2 !1g is a U�Lusin set in H.

Case 1: U = xN for some x 2 H.

This contradicts Lemma 4 since cf(xN) = !.

Case 2: U 6= xN for any x 2 H and cf(U) = � � !1 .

Let hy� : � < �i be increasing and co�nal in U such that y�+1=y� > n for any

n 2 N (there is such a sequence because U 6= xN).

Let

�(X) = fgX(y�+1) � y� : � < �g
[
fF � X : F 2 [B]<!g:

Claim: �(X) is �nitely satis�able.

Proof of the claim: Let F be any �nite subset of B and I be an interval of H

such that �card(I) � y�+1 . Then I can be divided into in�nitely many subintervals

of length � y� since y�+1=y� is in�nite. One of those subintervals should be disjoint

from F since F is �nite. So gF (y�+1) � y� . This ends the proof of the claim.

Since card(�(X)) < !2, there exists an A which realizes �(X) by !2�saturation.

Then A is internal U�nowhere dense and B � A, a contradiction.

Case 3: U 6= x=N for any x 2 H and ci(U) = � � !1 .

Let hy� : � < �i be decreasing and coinitial in H � U such that y�=y�+1 > n for

all n 2 N (there is such a sequence because U 6= x=N).

Let

�(X) = fgX(y�) � y�+1 : � < �g
[
fF � X : F 2 [B]<!g:
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Then �(X) is �nitely satis�able for the same reason as in Case 2. By !2�saturation

there exists an internal U�nowhere dense set A which covers B, a contradiction.

Case 4: U is a (� !2;� !2) cut.

Let D(B) = fjx� yj : x; y 2 Bg. Then card(D(B)) � !1 . Hence

9x; y 2 H (x 62 U and y 2 U such that [y; x]
T
D(B) = ;).

Let

�(X) = f8z 2 H (3y � z � x! gX(z) � [z=3])g
[
fF � X : F 2 [B]<!g:

Claim: �(X) is �nitely satis�able.

Proof of the claim: Let F be any �nite subset of B, z 2 [3y; x] and [c; d] be

an interval of H such that jd� cj � z. Let J1 = [c; c + [z=3]]; J2 = [c+ [z=3] + 1; c+

2[z=3]] and J3 = [c + 2[z=3] + 1; c + 3[z=3]]. Then J1
T
F 6= ; implies J3

T
F = ;

because D(B)
T
[y; x] = ;. So gF (z) � [z=3] and this ends the proof of the claim. By

!2�saturation there exists an internal U�nowhere dense subset of H which covers

B, a contradiction. 2
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