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Abstract

In an wj—saturated nonstandard universe a cut is an initial segment of the
hyperintegers, which is closed under addition. Keisler and Leth in [KL] intro-
duced, for each given cut U, a corresponding U-topology on the hyperintegers
by letting O be U—open if for any x € O there is a y greater than all the ele-
ments in U such that the interval [z —y, 2 +y] C O. Let U be a cut in a hyper-
finite time line H, which is a hyperfinite initial segment of the hyperintegers. A
subset B of H is called a U —Lusin set in H if B is uncountable and for any Loeb—
Borel U—meager subset X of H, B[] X is countable. Here a Loeb—Borel set is
an element of the o—algebra generated by all internal subsets of H. In this paper
we answer some questions of Keisler and Leth about the existence of U —Lusin
sets by proving that: (1) fU =2/N={~ e H:V¥x e N(~ < /X)} for
some x € H, then there exists a U—Lusin set of power x if and only if there
exists a Lusin set of the reals of power «; (2) If U # z/N but the coinitiality
of U is w, then there are no U—Lusin sets if CH fails; (3) Under ZFC there
exists a nonstandard universe in which U—Lusin sets exist for every cut U with
uncountable cofinality and coinitiality; (4) In any ws,—saturated nonstandard
universe there are no U—Lusin sets for all cuts U except U = z/N.

Throughout this paper we work within w;—saturated nonstandard universes. We
let M be a nonstandard universe and *N be the set of all hyperintegers in M which
contains N, the set of all standard positive integers. Let H € *N — N; we call
H = {n € *N: x < H} a hyperfinite time line or a hyperline for short. We always
let H be the largest element of H. Let [a,b] = {x € H : a < x < b} be an interval in
H and [r] = max{n € *N: x < \} for any hyperreal r.

A notion of Loeb measure for H, which is the standard part of the countably
additive extension of the counting measure on H, was introduced by P. Loeb (cf.[Lo])
as a counterpart of Lebesgue measure for the reals. Recently H. J. Keisler and S. Leth
(cf.[KL]) introduced U—topologies on H for any cuts U as an analogue of the order
topology on the reals. They discussed the relationship between U—meager sets and
Loeb measure zero sets and the existence of Loeb—Sierpinski sets and U—Lusin sets.
They listed many questions at the end of the paper. In this paper we discuss some of
those questions about the existence of U—Lusin sets. Most of the questions discussed
here were motivated by the results of [KL], [M1] and [M2]. For background in model



theory see Chang and Keisler [CK], for background in nonstandard universes and the
Loeb measure see Stroyan and Bayod [SB], for standard Sierpinski sets and Lusin sets
see [M1] and for Loeb-Borel sets and countably determined sets see [KKLM]. This
paper was developed under the supervision of H. J. Keisler, to whom the author is
deeply grateful.

Throughout this paper we let card(A) mean external cardinality of A and *card(A)
mean internal cardinality of A if A is an internal set. When A is hyperfinite, *card(A)

is a hyperinteger.

Let us recall that a cut in A is an initial segment of H which is closed under
addition. A cut must be external. Let U be a cut in H. A subset O of H is called
U—open if for any € O there is a y € H — U such that [z — y,x +y] C O. All
U—open sets form a U—topology on H. A subset of H is called U—nowhere dense
(U—meager) if it is nowhere dense (meager) in the U—topology.

A subset B of H is called a Loeb—Sierpinski set if B is uncountable and for each
set X of Loeb measure zero, B () X is countable

Let U be a cut in H. We recall that a subset B of H is called a U—Lusin set if B
is uncountable and for every Loeb-Borel U—meager set X, B X is countable. (A
subset of H is called a Loeb—Borel set if it is an element of the o —algebra generated
by all internal subsets of #.)

We restrict the X above to be a Loeb—Borel set because otherwise U —Lusin sets
will not exist for most of the cuts U by Proposition 8.3 in [KL].

Now we list some results from [KL] and [M2], which motivate the questions dis-
cussed here.

[KL, Proposition 8.9]. Loeb-Sierpiniski sets do not exist in any ws—saturated
nonstandard universe.

KL, Proposition 8.10]. (CH). Assume that the family of all internal subsets of
‘H has cardinality w; . Let U be a set of cuts which is well ordered by the relation D.
Then there is a set B C ‘H which is U—Lusin for every cut U € U. In particular, for
each cut U there is a U—Lusin set.

[M2, Theorem 13]. It is consistent with ZFC' that there exists a Sierpinski set
of the reals, but no Loeb—Sierpinski set in any w;—saturated nonstandard universe.
This shows that Loeb—Sierpinski sets are harder to get than Sierpinski sets of the

reals.



[M2, Theorem 16]. It is relatively consistent with ZFC' that the continuum hy-

pothesis is false but in some w;—saturated universe there is a Loeb-Sierpinski set.
The questions follow:

(1) Are there models of ZFC' in which Lusin sets of the reals exist but there are

no nonstandard universes in which U—Lusin sets exist?
(2) Can U—Lusin sets exist in an wy—saturated nonstandard universe?
(3) Can there ever exist U—Lusin sets of cardinality wy 7

Let U be a cut in ‘H and x € H. The following are cuts:

tU={yeH :TzeU (y<uzz)}

z/U={yeH :VzeU(y<z/z)}

Let U be a cut in H; we let

cf(U), the cofinality of U, = min{card(F) : F C U and F is cofinal in U}.

ci(U), the coinitiality of U, = min{card(F) : F C H — U and F is coinitial in
H—-U}.

U is called a (k,\) cut (> K, > A) cut) if ¢f(U) =k and ci(U) = X (¢f(U) > k
and ci(U) > A).

Theorem 1 Let U = x/N for some v € H. Then there exists a U—Lusin set of

cardinality k if and only if there exists a Lusin set of the reals of cardinality k.
We need two lemmas before we prove this theorem.

Lemma 1 (Keisler and Leth) There exists an H/N—Lusin set of cardinality k im-

plies that there exists a Lusin set of the reals of cardinality k.
Proof:  See [KL, Proposition 8.4]. O

Lemma 2 There exists a Lusin set of the reals of cardinality x implies that there

exists an H/N—Lusin set of cardinality x in H.

Proof:  Let B’ be a Lusin set of the reals and card(B') = k. We can assume that
B’ C I = [0,1], the unit interval of the reals. For any x € H we let st(z) be the
standard part of #/H. Then st is a function from H to I and |st(z) — st(y)| = 0 iff
|z —y| € H/N.



For each b € B’ let z, € H such that st(x;) =b and B = {x, : b € B'}. We claim
that B is an H/N—Lusin set and card(B) = k.

Let X be any H/N—nowhere dense set in H (X is not necessarily a Loeb—Borel
set) and X' = {st(z):x € X} C I.

Claim: X' is nowhere dense in I.

Proof of the claim: Let o/,b' € I and ¢’ < V. Let a,b € H such that st(a) = d
and st(b) = b'. Since |b —a| € U and X is U—nowhere dense in #, there exist
¢,d € Hsuchthata <c<d<b, |d—¢| ¢ U and [¢,dNX = 0. Letc:é—l—[%é] and
d=c+ [@] Let ¢ = st(c) and d’' = st(d). Then o' < st(¢) < ¢ < d' < st(d) <V
Hence (¢/,d') N X' = (). This ends the proof of the claim.

X'N B’ is countable since B’ is a Lusin set in I. And X N B is also countable

because st is one to one on B. card(B) = k since st"B=B'. O

Proof of Theorem 1:

=" There exists a Lusin set of cardinality x in I = There exists an
x/N—=Lusin set in [1, 2] by Lemma 2 = There exists an /N—Lusin set in H.

“=":  Letx € H—N. It is sufficient to prove that there exists an x/N—Lusin
set of cardinality x in A implies that there exists an x/N—Lusin set of cardinality x
n [1,z], by Lemma 1.

Let B C H be an 2/N—Lusin set and card(B) = k.

For any y € B there exists a z € HJ{0} such that zz < y < z(z + 1). Let
ay =y —xz, then A ={a,:y € B} C[1,z].

Claim: A is an /N—Lusin set in [1, z] and card(A) = k.

Proof of Claim: If card(A) < k then Ja € A such that card({y € B : a, =
a}) > w.

Let A, = {a+zz: 2z € H}NH, then A, is internal and x/N—nowhere dense. If
a, = a for some y € B, then y — r2 = a = y € A,, hence card(A,NB) > w. But
B is an x/N—Lusin set, a contradiction.

Let S C [1,z], we define

F(S)={s+zz:s€ S and z € HU{0}} NH.

Then for any S C [1,z] and z € HU{0}, F(S)N[zz + Lz(z + 1)] = {s + zz :
s € S}NH. So S C [1,z] is v/N—nowhere dense = F(S) is 2/N—nowhere dense
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in # and S C [1,z] is internal = F(S) is internal. Besides, F' preserves union,
intersection and complement. So if S C [1,x] is a Loeb-Borel set, then F(S) is also
a Loeb—Borel set and S and F'(S) are at the same level in the Loeb-Borel hierarchy.

If Ais not an x/N—Lusin set in [1, z], then there exists a Loeb—Borel 2/N—meager
set S in [1,z] such that S A is uncountable. For any a € SN A there isay € B
and z € HU{0} such that a = a, = y — 22. Then y = a + xz € F(S), which
implies that y € F/(S)N B. Hence {a, : y € F(S)N B} is uncountable, so F(S) N B
is uncountable. But F'(S) is a Loeb—Borel x/N—meager set and B is an 2/N—Lusin

set, a contradiction. O

Remark: Let uscall B astrong U—Lusin set if B is uncountable and has countable
intersection with every U—meager (without Loeb—Borel) set. Then in the case of
U = x/N the existence of U—Lusin sets and the existence of strong U—Lusin sets are

equivalent.

Theorem 2 Assume 2¥ > wy. Let Ube a cut in H such that ci(U) = w and U # x/N
for any x € H. Then there are no U— Lusin sets in H.

Proof: Let B C H be a U—Lusin set with cardinality w; . Let (x, : n € w) be a
decreasing sequence in H such that it is coinitial in H —U and for each n € w /11
is infinite. For any n € w there is an a,, € # — N such that a,x,,; < x,/2. For any
y € [1,a,], let

Ay =U{[(Gay +y— Dy + 1, (zan + y)zapd] [V H 2 2 € HJ{0}}.

Then A, is internal and A, N A, =0ify #y.

Since card(B) = w; and card([1,a,]) = 2¥ > w, then there exists a y, € [1,q]
such that A, N B = 0.

Let

F=t— A, = N0H-4,).

new new
Then F is a 1Y U—nowhere dense set since every interval of length z,, has a subinterval
of length x4 from A, which is disjoint from F. But B C F. This contradicts that
B is a U—Lusin set. O

Theorem 3 (ZFC') There exists a nonstandard universe M with a set B in each
hyperline H € M such that B is a U—Lusin set for every (> wy,> wy) cut U in H.
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We need a lemma from [Zi].

Lemma 3 (B. Zivaljevié¢) Let U be a (> wy,> wy) cut in H. Then every count-
ably determined U—nowhere dense set can be covered by countably many internal

U—nowhere dense sets.
Proof:  See [Zi, Proposition 1.2]. O
Remark:  Every Loeb—Borel set is countably determined. (cf. [KKLM])

Proof of Theorem 3: Let My be the standard superstructure. We build an

w1 + 1—elementary chain of nonstandard universes by taking
Mai1 2 M| F,

for some K, > the cardinality of the family of all internal subsets of *N, in M, . Here

*Ng is the set of all hyperintegers in M, and F, is a regular ultrafilter over ., and

My 2 | Mg

fB<a

if v is a limit ordinal below w; + 1. The w;—saturated nonstandard universe we want
is M, . For any H € *N,,, — N we want to find a U—Lusin set in ‘H. Without loss

of generality we assume H € *Ny . For all @ < wy, let , 4(2) be the type of formulas
{r ¢ A: ACH is M,—internal U—nowhere dense for some cut U in N *N, } U{~~ < H}.

, o(2) is finitely satisfiable in M, and card(, ,(z)) < ko . By the saturation of the

Kq—Tegular ultrapower over M,, there exists an z, € *Ny ¢ realizing , o(x) in Mgy, .

Claim: {z,: a <w;} is a U—=Lusin set for any (> wy,> wy) cut U in H.

Proof of the claim: It suffices to prove that {z, : @ < w;} has countable intersec-
tion with every internal U —nowhere dense set by Lemma 3.

Let A be an internal U—nowhere dense subset of H in M, . Then Ja < w;(A €
M,). Let U, = {z € *N, : » € U}. Then U, is a cut in *N, NH. Now A is
U,—nowhere dense because for any interval I of length y such that y € H N M, and
y & Ua,

zp = max{z € H : there is a subinterval J of I such that *card(J) =z and JNA = (}
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is in M, and is not in U. Hence 23 ¢ Aif > a. O

Remarks: (1) In H there are (> wy,> w;) good and bad cuts. (A cut U in H is
called good if there is a U-meager set in ‘H with Loeb measure one. Otherwise U is
called bad.)

(2) In some universes U—Lusin sets are easier to get than Lusin sets of the reals

for every (> wy, > wy) cut U.

Theorem 4 For each hyperline H in an ws—saturated nonstandard universe, if U #
z/N for all x € H, then there are no U—Lusin sets in H.

Before the proof we need one more definition and a lemma by Keisler and Leth.
Let A be an internal subset of H and x € H. Define

ga(r) = max{b € H : for every interval I of length > =z, there is a
subinterval J of I such that *card(J) > band JNA=10,orb=1}.

ga is an internal function if A is internal.
It is easy to see that if A C # be internal, then A is U—nowhere dense iff

Vo & U(ga(z) € U).

Lemma 4 (Keisler and Leth) In any wy—saturated nonstandard universe, if cf(U)

w, then there are no U— Lusin sets.

Proof:  Let U be any cut in H and x € H. We call the set {y € H : |y — z| € U},
the U—monad of z. If ¢f(U) = w, then every U—monad is a XY set and U —nowhere
dense.

Assume that there is a U—Lusin set B. Then the intersection of B and each
U—monad should be at most countable. Since B is uncountable, we can assume that
B has at most one element in every U —monad.

Since ¢f(U) = w, and by w;—saturation, there is an internal sequence (z, : n <
a) for some a € H — N such that (x, : n < w) is increasing, cofinal in U and
Vn < a (zypi1/xn > 2", Let , (X) be the type

{vn € [1,d] (9x(2ns1) = za)} (H{F € X : F € [B]™}.

Claim: , (X) is finitely satisfiable.



Proof of the claim: Let F' be any finite subset of B. Since B has at most one
element in each U—monad, then zy = min{|z —y| : x,y € F,ox #y} ¢ U. Let I be
any interval of H such that *card(I) > z,41. If 2,41 € U (that means n is finite),
then there exists a subinterval J of I such that *card(J) > z, and J N F = () because
20 € U and @41 /2y > 2" > 2. If 2,41 ¢ U (that means n is infinite), then I can
be divided into infinitely many disjoint subintervals of length > x,, because 41/,
is infinite. One of those subintervals should be disjoint from F' since F is finite.

So gp(Tpy1) > x, for every n € [1,al. This ends the proof of the claim.

Since card(, (X)) < wq, there is an internal set A which is U—nowhere dense and
B C A, a contradiction. O

Proof of Theorem 4: We prove the theorem case by case.
Assume that B = {z, : @ € w;} is a U—Lusin set in H.

Case 1: U = zN for some z € H.

This contradicts Lemma 4 since cf (zN) = w.

Case 2: U #zaNforany x € H and ¢f (U) =k < w; .

Let (Yo : @ < k) be increasing and cofinal in U such that y,.1/y. > n for any
n € N (there is such a sequence because U # zN).

Let

, (X) ={9x(Yar1) 2 ya o <w} [ J{F C X : F € [B]*}.

Claim: , (X) is finitely satisfiable.

Proof of the claim: Let F' be any finite subset of B and I be an interval of H
such that *card(I) > yas1 . Then I can be divided into infinitely many subintervals
of length > v, since yo11/y, is infinite. One of those subintervals should be disjoint

from F since F is finite. So gr(Yat+1) > Yo . This ends the proof of the claim.

Since card(, (X)) < ws, there exists an A which realizes , (X) by wy—saturation.

Then A is internal U—nowhere dense and B C A, a contradiction.
Case 3: U #xz/Nforany x € H and ci(U) =k < wy .
Let (yo : o < k) be decreasing and coinitial in # — U such that y,/yer1 > n for

all n € N (there is such a sequence because U # z/N).
Let

, (X) ={9x(¥a) > Yar1 o <} H{F C X : F € [B]*}.
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Then , (X) is finitely satisfiable for the same reason as in Case 2. By wy—saturation

there exists an internal U —nowhere dense set A which covers B, a contradiction.

Case 4: Uis a (> wq, > wy) cut.
Let D(B) = {|x —y| : x,y € B}. Then card(D(B)) < w, . Hence

dr,y € H (x € U and y € U such that [y, z] N D(B) = 0).
Let

, (X)={VzeH By<z<az—gx(z) > [z/3))} | {F C X : F € [B]**}.

Claim: , (X) is finitely satisfiable.

Proof of the claim: Let F' be any finite subset of B, z € [3y,z] and [¢, d] be
an interval of A such that |d —¢| > z. Let J; = [e,c+ [2/3]], Ja = [c+ [2/3] + 1,c +
2[z/3]] and J3 = [c+ 2[z/3] + 1,¢ + 3[z/3]]. Then JiNF # 0 implies JsNF = ()
because D(B) N[y, x] = 0. So gr(z) > [z/3] and this ends the proof of the claim. By
we—saturation there exists an internal U —nowhere dense subset of A which covers

B, a contradiction. O
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