Renling Jin

Abstract

In an ω_1 -saturated nonstandard universe a cut is an initial segment of the hyperintegers, which is closed under addition. Keisler and Leth in [KL] introduced, for each given cut U, a corresponding U-topology on the hyperintegers by letting O be U-open if for any $x \in O$ there is a y greater than all the elements in U such that the interval $[x - y, x + y] \subseteq O$. Let U be a cut in a hyperfinite time line \mathcal{H} , which is a hyperfinite initial segment of the hyperintegers. A subset B of \mathcal{H} is called a U-Lusin set in \mathcal{H} if B is uncountable and for any Loeb-Borel U-meager subset X of $\mathcal{H}, B \cap X$ is countable. Here a Loeb-Borel set is an element of the σ -algebra generated by all internal subsets of \mathcal{H} . In this paper we answer some questions of Keisler and Leth about the existence of U-Lusin sets by proving that: (1) If $U = x/\mathbb{N} = \{ \curvearrowright \in \mathcal{H} : \forall \ltimes \in \mathbb{N} \ (\curvearrowright < \curvearrowleft/\ltimes) \}$ for some $x \in \mathcal{H}$, then there exists a U-Lusin set of power κ if and only if there exists a Lusin set of the reals of power κ ; (2) If $U \neq x/\mathbb{N}$ but the coinitiality of U is ω , then there are no U-Lusin sets if CH fails; (3) Under ZFC there exists a nonstandard universe in which U-Lusin sets exist for every cut U with uncountable cofinality and coinitiality; (4) In any ω_2 -saturated nonstandard universe there are no U-Lusin sets for all cuts U except $U = x/\mathbb{N}$.

Throughout this paper we work within ω_1 -saturated nonstandard universes. We let \mathcal{M} be a nonstandard universe and \mathbb{N} be the set of all hyperintegers in \mathcal{M} which contains \mathbb{N} , the set of all standard positive integers. Let $H \in \mathbb{N} - \mathbb{N}$; we call $\mathcal{H} = \{n \in \mathbb{N} : \mathbb{K} \leq \mathbb{H}\}$ a hyperfinite time line or a hyperline for short. We always let H be the largest element of \mathcal{H} . Let $[a, b] = \{x \in \mathcal{H} : a \leq x \leq b\}$ be an interval in \mathcal{H} and $[r] = \max\{n \in \mathbb{N} : \mathbb{K} \leq \mathbb{N}\}$ for any hyperreal r.

A notion of Loeb measure for \mathcal{H} , which is the standard part of the countably additive extension of the counting measure on \mathcal{H} , was introduced by P. Loeb (cf.[Lo]) as a counterpart of Lebesgue measure for the reals. Recently H. J. Keisler and S. Leth (cf.[KL]) introduced U-topologies on \mathcal{H} for any cuts U as an analogue of the order topology on the reals. They discussed the relationship between U-meager sets and Loeb measure zero sets and the existence of Loeb-Sierpiński sets and U-Lusin sets. They listed many questions at the end of the paper. In this paper we discuss some of those questions about the existence of U-Lusin sets. Most of the questions discussed here were motivated by the results of [KL], [M1] and [M2]. For background in model theory see Chang and Keisler [CK], for background in nonstandard universes and the Loeb measure see Stroyan and Bayod [SB], for standard Sierpiński sets and Lusin sets see [M1] and for Loeb–Borel sets and countably determined sets see [KKLM]. This paper was developed under the supervision of H. J. Keisler, to whom the author is deeply grateful.

Throughout this paper we let card(A) mean external cardinality of A and *card(A) mean internal cardinality of A if A is an internal set. When A is hyperfinite, *card(A) is a hyperinteger.

Let us recall that a cut in \mathcal{H} is an initial segment of \mathcal{H} which is closed under addition. A cut must be external. Let U be a cut in \mathcal{H} . A subset O of \mathcal{H} is called U-open if for any $x \in O$ there is a $y \in \mathcal{H} - U$ such that $[x - y, x + y] \subseteq O$. All U-open sets form a U-topology on \mathcal{H} . A subset of \mathcal{H} is called U-nowhere dense (U-meager) if it is nowhere dense (meager) in the U-topology.

A subset B of \mathcal{H} is called a Loeb–Sierpiński set if B is uncountable and for each set X of Loeb measure zero, $B \cap X$ is countable

Let U be a cut in \mathcal{H} . We recall that a subset B of \mathcal{H} is called a U-Lusin set if B is uncountable and for every Loeb-Borel U-meager set $X, B \cap X$ is countable. (A subset of \mathcal{H} is called a Loeb-Borel set if it is an element of the σ -algebra generated by all internal subsets of \mathcal{H} .)

We restrict the X above to be a Loeb-Borel set because otherwise U-Lusin sets will not exist for most of the cuts U by Proposition 8.3 in [KL].

Now we list some results from [KL] and [M2], which motivate the questions discussed here.

[KL, Proposition 8.9]. Loeb–Sierpiński sets do not exist in any ω_2 –saturated nonstandard universe.

[KL, Proposition 8.10]. (CH). Assume that the family of all internal subsets of \mathcal{H} has cardinality ω_1 . Let \mathcal{U} be a set of cuts which is well ordered by the relation \supseteq . Then there is a set $B \subseteq \mathcal{H}$ which is U-Lusin for every cut $U \in \mathcal{U}$. In particular, for each cut U there is a U-Lusin set.

[M2, Theorem 13]. It is consistent with ZFC that there exists a Sierpiński set of the reals, but no Loeb–Sierpiński set in any ω_1 –saturated nonstandard universe. This shows that Loeb–Sierpiński sets are harder to get than Sierpiński sets of the reals. [M2, Theorem 16]. It is relatively consistent with ZFC that the continuum hypothesis is false but in some ω_1 -saturated universe there is a Loeb-Sierpiński set.

The questions follow:

(1) Are there models of ZFC in which Lusin sets of the reals exist but there are no nonstandard universes in which U-Lusin sets exist?

- (2) Can U-Lusin sets exist in an ω_2 -saturated nonstandard universe?
- (3) Can there ever exist U-Lusin sets of cardinality ω_2 ?

Let U be a cut in \mathcal{H} and $x \in \mathcal{H}$. The following are cuts: $xU = \{y \in \mathcal{H} : \exists z \in U \ (y \leq xz)\}$ $x/U = \{y \in \mathcal{H} : \forall z \in U \ (y \leq x/z)\}$ Let U be a cut in \mathcal{H} ; we let cf(U), the cofinality of U, = min $\{card(F) : F \subseteq U \text{ and } F \text{ is cofinal in } U\}$. ci(U), the coinitiality of U, = min $\{card(F) : F \subseteq \mathcal{H} - U \text{ and } F \text{ is coinitial in } \mathcal{H} - U\}$.

U is called a (κ, λ) cut $((\geq \kappa, \geq \lambda)$ cut) if $cf(U) = \kappa$ and $ci(U) = \lambda$ $(cf(U) \geq \kappa)$ and $ci(U) \geq \lambda$.

Theorem 1 Let $U = x/\mathbb{N}$ for some $x \in \mathcal{H}$. Then there exists a U-Lusin set of cardinality κ if and only if there exists a Lusin set of the reals of cardinality κ .

We need two lemmas before we prove this theorem.

Lemma 1 (Keisler and Leth) There exists an H/\mathbb{N} -Lusin set of cardinality κ implies that there exists a Lusin set of the reals of cardinality κ .

Proof: See [KL, Proposition 8.4]. \Box

Lemma 2 There exists a Lusin set of the reals of cardinality κ implies that there exists an H/\mathbb{N} -Lusin set of cardinality κ in \mathcal{H} .

Proof: Let B' be a Lusin set of the reals and $card(B') = \kappa$. We can assume that $B' \subseteq I = [0, 1]$, the unit interval of the reals. For any $x \in \mathcal{H}$ we let st(x) be the standard part of x/H. Then st is a function from \mathcal{H} to I and |st(x) - st(y)| = 0 iff $|x - y| \in H/\mathbb{N}$.

For each $b \in B'$ let $x_b \in \mathcal{H}$ such that $st(x_b) = b$ and $B = \{x_b : b \in B'\}$. We claim that B is an H/\mathbb{N} -Lusin set and $card(B) = \kappa$.

Let X be any H/\mathbb{N} -nowhere dense set in \mathcal{H} (X is not necessarily a Loeb-Borel set) and $X' = \{st(x) : x \in X\} \subseteq I$.

Claim: X' is nowhere dense in I.

Proof of the claim: Let $a', b' \in I$ and a' < b'. Let $a, b \in \mathcal{H}$ such that st(a) = a'and st(b) = b'. Since $|b - a| \notin U$ and X is U-nowhere dense in \mathcal{H} , there exist $\bar{c}, \bar{d} \in \mathcal{H}$ such that $a < \bar{c} < \bar{d} < b$, $|\bar{d} - \bar{c}| \notin U$ and $[\bar{c}, \bar{d}] \cap X = \emptyset$. Let $c = \bar{c} + [\frac{\bar{d} - \bar{c}}{3}]$ and $d = \bar{c} + [\frac{2(\bar{d} - \bar{c})}{3}]$. Let c' = st(c) and d' = st(d). Then $a' \leq st(\bar{c}) < c' < d' < st(\bar{d}) \leq b'$. Hence $(c', d') \cap X' = \emptyset$. This ends the proof of the claim.

 $X' \cap B'$ is countable since B' is a Lusin set in I. And $X \cap B$ is also countable because st is one to one on B. $card(B) = \kappa$ since st''B = B'. \Box

Proof of Theorem 1:

" \Leftarrow ": There exists a Lusin set of cardinality κ in $I \Rightarrow$ There exists an x/\mathbb{N} -Lusin set in [1, x] by Lemma 2 \Rightarrow There exists an x/\mathbb{N} -Lusin set in \mathcal{H} .

" \Longrightarrow ": Let $x \in \mathcal{H} - \mathbb{N}$. It is sufficient to prove that there exists an x/\mathbb{N} -Lusin set of cardinality κ in \mathcal{H} implies that there exists an x/\mathbb{N} -Lusin set of cardinality κ in [1, x], by Lemma 1.

Let $B \subseteq \mathcal{H}$ be an x/\mathbb{N} -Lusin set and $card(B) = \kappa$.

For any $y \in B$ there exists a $z \in \mathcal{H} \cup \{0\}$ such that $xz < y \leq x(z+1)$. Let $a_y = y - xz$, then $A = \{a_y : y \in B\} \subseteq [1, x]$.

Claim: A is an x/\mathbb{N} -Lusin set in [1, x] and $card(A) = \kappa$.

Proof of Claim: If $card(A) < \kappa$ then $\exists a \in A$ such that $card(\{y \in B : a_y = a\}) > \omega$.

Let $A_a = \{a + xz : z \in \mathcal{H}\} \cap \mathcal{H}$, then A_a is internal and x/\mathbb{N} -nowhere dense. If $a_y = a$ for some $y \in B$, then $y - xz = a \Longrightarrow y \in A_a$, hence $card(A_a \cap B) > \omega$. But B is an x/\mathbb{N} -Lusin set, a contradiction.

Let $S \subseteq [1, x]$, we define

$$F(S) = \{s + xz : s \in S \text{ and } z \in \mathcal{H} \cup \{0\}\} \cap \mathcal{H}.$$

Then for any $S \subseteq [1, x]$ and $z \in \mathcal{H} \cup \{0\}, F(S) \cap [xz + 1, x(z + 1)] = \{s + xz : s \in S\} \cap \mathcal{H}$. So $S \subseteq [1, x]$ is x/\mathbb{N} -nowhere dense $\Longrightarrow F(S)$ is x/\mathbb{N} -nowhere dense

in \mathcal{H} and $S \subseteq [1, x]$ is internal $\implies F(S)$ is internal. Besides, F preserves union, intersection and complement. So if $S \subseteq [1, x]$ is a Loeb-Borel set, then F(S) is also a Loeb-Borel set and S and F(S) are at the same level in the Loeb-Borel hierarchy.

If A is not an x/\mathbb{N} -Lusin set in [1, x], then there exists a Loeb-Borel x/\mathbb{N} -meager set S in [1, x] such that $S \cap A$ is uncountable. For any $a \in S \cap A$ there is a $y \in B$ and $z \in \mathcal{H} \cup \{0\}$ such that $a = a_y = y - xz$. Then $y = a + xz \in F(S)$, which implies that $y \in F(S) \cap B$. Hence $\{a_y : y \in F(S) \cap B\}$ is uncountable, so $F(S) \cap B$ is uncountable. But F(S) is a Loeb-Borel x/\mathbb{N} -meager set and B is an x/\mathbb{N} -Lusin set, a contradiction. \Box

Remark: Let us call B a strong U-Lusin set if B is uncountable and has countable intersection with every U-meager (without Loeb-Borel) set. Then in the case of $U = x/\mathbb{N}$ the existence of U-Lusin sets and the existence of strong U-Lusin sets are equivalent.

Theorem 2 Assume $2^{\omega} > \omega_1$. Let U be a cut in \mathcal{H} such that $ci(U) = \omega$ and $U \neq x/\mathbb{N}$ for any $x \in \mathcal{H}$. Then there are no U-Lusin sets in \mathcal{H} .

Proof: Let $B \subseteq \mathcal{H}$ be a U-Lusin set with cardinality ω_1 . Let $\langle x_n : n \in \omega \rangle$ be a decreasing sequence in \mathcal{H} such that it is coinitial in $\mathcal{H} - U$ and for each $n \in \omega x_n/x_{n+1}$ is infinite. For any $n \in \omega$ there is an $a_n \in \mathcal{H} - \mathbb{N}$ such that $a_n x_{n+1} < x_n/2$. For any $y \in [1, a_n]$, let

$$A_y = \bigcup \{ [(za_n + y - 1)x_{n+1} + 1, (za_n + y)x_{n+1}] \bigcap \mathcal{H} : z \in \mathcal{H} \bigcup \{0\} \}.$$

Then A_y is internal and $A_y \cap A_{y'} = \emptyset$ if $y \neq y'$.

Since $card(B) = \omega_1$ and $card([1, a_n]) = 2^{\omega} > \omega_1$, then there exists a $y_n \in [1, a]$ such that $A_{y_n} \cap B = \emptyset$.

Let

$$F = \mathcal{H} - \bigcup_{n \in \omega} A_{y_n} = \bigcap_{n \in \omega} (\mathcal{H} - A_{y_n}).$$

Then F is a $\Pi_1^0 U$ -nowhere dense set since every interval of length x_n has a subinterval of length x_{n+1} from A_{y_n} which is disjoint from F. But $B \subseteq F$. This contradicts that B is a U-Lusin set. \Box

Theorem 3 (ZFC) There exists a nonstandard universe \mathcal{M} with a set B in each hyperline $\mathcal{H} \in \mathcal{M}$ such that B is a U-Lusin set for every $(\geq \omega_1, \geq \omega_1)$ cut U in \mathcal{H} .

We need a lemma from [Zi].

Lemma 3 (B. Živaljević) Let U be a $(\geq \omega_1, \geq \omega_1)$ cut in \mathcal{H} . Then every countably determined U-nowhere dense set can be covered by countably many internal U-nowhere dense sets.

Proof: See [Zi, Proposition 1.2]. \Box

Remark: Every Loeb–Borel set is countably determined. (cf. [KKLM])

Proof of Theorem 3: Let \mathcal{M}_0 be the standard superstructure. We build an $\omega_1 + 1$ -elementary chain of nonstandard universes by taking

$$\mathcal{M}_{\alpha+1} \cong \mathcal{M}_{\alpha}^{\kappa_{\alpha}}/\mathcal{F}_{\alpha}$$

for some $\kappa_{\alpha} \geq$ the cardinality of the family of all internal subsets of \mathbb{N}_{α} in \mathcal{M}_{α} . Here \mathbb{N}_{α} is the set of all hyperintegers in \mathcal{M}_{α} and \mathcal{F}_{α} is a regular ultrafilter over κ_{α} and

$$\mathcal{M}_{lpha} \cong igcup_{eta < lpha} \mathcal{M}_{eta}$$

if α is a limit ordinal below $\omega_1 + 1$. The ω_1 -saturated nonstandard universe we want is \mathcal{M}_{ω_1} . For any $H \in {}^*\mathbb{N}_{\omega_{\mathbb{H}}} - \mathbb{N}$ we want to find a U-Lusin set in \mathcal{H} . Without loss of generality we assume $H \in {}^*\mathbb{N}_{\mathbb{H}}$. For all $\alpha < \omega_1$, let , $_{\alpha}(x)$ be the type of formulas

 $\{x \notin A : A \subseteq \mathcal{H} \text{ is } \mathcal{M}_{\alpha} \text{-internal } U \text{-nowhere dense for some cut } U \text{ in } \mathcal{H} \cap {}^*\mathbb{N}_{\alpha}\} \cup \{ \curvearrowleft \leq \mathbb{H} \}.$

, $_{\alpha}(x)$ is finitely satisfiable in \mathcal{M}_{α} and $card(, _{\alpha}(x)) \leq \kappa_{\alpha}$. By the saturation of the κ_{α} -regular ultrapower over \mathcal{M}_{α} there exists an $x_{\alpha} \in *\mathbb{N}_{\alpha+\mathcal{W}}$ realizing , $_{\alpha}(x)$ in $\mathcal{M}_{\alpha+1}$.

Claim: $\{x_{\alpha} : \alpha < \omega_1\}$ is a *U*-Lusin set for any $(\geq \omega_1, \geq \omega_1)$ cut *U* in \mathcal{H} .

Proof of the claim: It suffices to prove that $\{x_{\alpha} : \alpha < \omega_1\}$ has countable intersection with every internal U-nowhere dense set by Lemma 3.

Let A be an internal U-nowhere dense subset of \mathcal{H} in \mathcal{M}_{ω_1} . Then $\exists \alpha < \omega_1 (A \in \mathcal{M}_{\alpha})$. Let $U_{\alpha} = \{x \in \mathbb{N}_{\alpha} : \varphi \in \mathbb{U}\}$. Then U_{α} is a cut in $\mathbb{N}_{\alpha} \cap \mathcal{H}$. Now A is U_{α} -nowhere dense because for any interval I of length y such that $y \in \mathcal{H} \cap \mathcal{M}_{\alpha}$ and $y \notin U_{\alpha}$,

 $z_0 = \max\{z \in \mathcal{H} : \text{there is a subinterval } J \text{ of } I \text{ such that } *card(J) = z \text{ and } J \cap A = \emptyset\}$

is in \mathcal{M}_{α} and is not in U. Hence $x_{\beta} \notin A$ if $\beta \geq \alpha$. \Box

Remarks: (1) In \mathcal{H} there are $(\geq \omega_1, \geq \omega_1)$ good and bad cuts. (A cut U in \mathcal{H} is called good if there is a U-meager set in \mathcal{H} with Loeb measure one. Otherwise U is called bad.)

(2) In some universes U-Lusin sets are easier to get than Lusin sets of the reals for every $(\geq \omega_1, \geq \omega_1)$ cut U.

Theorem 4 For each hyperline \mathcal{H} in an ω_2 -saturated nonstandard universe, if $U \neq x/\mathbb{N}$ for all $x \in \mathcal{H}$, then there are no U-Lusin sets in \mathcal{H} .

Before the proof we need one more definition and a lemma by Keisler and Leth. Let A be an internal subset of \mathcal{H} and $x \in \mathcal{H}$. Define

 $g_A(x) = \max\{b \in \mathcal{H} : \text{for every interval } I \text{ of length} \geq x, \text{ there is a subinterval } J \text{ of } I \text{ such that } *card(J) \geq b \text{ and } J \cap A = \emptyset, \text{ or } b = 1\}.$

 g_A is an internal function if A is internal.

It is easy to see that if $A \subseteq \mathcal{H}$ be internal, then A is U-nowhere dense iff $\forall x \notin U(g_A(x) \notin U)$.

Lemma 4 (Keisler and Leth) In any ω_2 -saturated nonstandard universe, if $cf(U) = \omega$, then there are no U-Lusin sets.

Proof: Let U be any cut in \mathcal{H} and $x \in \mathcal{H}$. We call the set $\{y \in \mathcal{H} : |y - x| \in U\}$, the U-monad of x. If $cf(U) = \omega$, then every U-monad is a Σ_1^0 set and U-nowhere dense.

Assume that there is a U-Lusin set B. Then the intersection of B and each U-monad should be at most countable. Since B is uncountable, we can assume that B has at most one element in every U-monad.

Since $cf(U) = \omega$, and by ω_1 -saturation, there is an internal sequence $\langle x_n : n < a \rangle$ for some $a \in \mathcal{H} - \mathbb{N}$ such that $\langle x_n : n \leq \omega \rangle$ is increasing, cofinal in U and $\forall n < a \ (x_{n+1}/x_n > 2^{n+1})$. Let, (X) be the type

$$\{\forall n \in [1, a] \ (g_X(x_{n+1}) \ge x_n)\} \bigcup \{F \subseteq X : F \in [B]^{<\omega}\}.$$

Claim: , (X) is finitely satisfiable.

Proof of the claim: Let F be any finite subset of B. Since B has at most one element in each U-monad, then $z_0 = \min\{|x - y| : x, y \in F, x \neq y\} \notin U$. Let I be any interval of \mathcal{H} such that $*card(I) \geq x_{n+1}$. If $x_{n+1} \in U$ (that means n is finite), then there exists a subinterval J of I such that $*card(J) \geq x_n$ and $J \cap F = \emptyset$ because $z_0 \notin U$ and $x_{n+1}/x_n \geq 2^{n+1} > 2$. If $x_{n+1} \notin U$ (that means n is infinite), then I can be divided into infinitely many disjoint subintervals of length $\geq x_n$ because x_{n+1}/x_n is infinite. One of those subintervals should be disjoint from F since F is finite.

So $g_F(x_{n+1}) \ge x_n$ for every $n \in [1, a]$. This ends the proof of the claim.

Since $card(, (X)) < \omega_2$, there is an internal set A which is U-nowhere dense and $B \subseteq A$, a contradiction. \Box

Proof of Theorem 4: We prove the theorem case by case.

Assume that $B = \{x_{\alpha} : \alpha \in \omega_1\}$ is a *U*-Lusin set in \mathcal{H} .

Case 1: $U = x\mathbb{N}$ for some $x \in \mathcal{H}$.

This contradicts Lemma 4 since $cf(x\mathbb{N}) = \omega$.

Case 2: $U \neq x\mathbb{N}$ for any $x \in \mathcal{H}$ and $cf(U) = \kappa \leq \omega_1$.

Let $\langle y_{\alpha} : \alpha < \kappa \rangle$ be increasing and cofinal in U such that $y_{\alpha+1}/y_{\alpha} > n$ for any $n \in \mathbb{N}$ (there is such a sequence because $U \neq x\mathbb{N}$).

Let

,
$$(X) = \{g_X(y_{\alpha+1}) \ge y_\alpha : \alpha < \kappa\} \bigcup \{F \subseteq X : F \in [B]^{<\omega}\}.$$

Claim: (X) is finitely satisfiable.

Proof of the claim: Let F be any finite subset of B and I be an interval of \mathcal{H} such that $*card(I) \geq y_{\alpha+1}$. Then I can be divided into infinitely many subintervals of length $\geq y_{\alpha}$ since $y_{\alpha+1}/y_{\alpha}$ is infinite. One of those subintervals should be disjoint from F since F is finite. So $g_F(y_{\alpha+1}) \geq y_{\alpha}$. This ends the proof of the claim.

Since $card(, (X)) < \omega_2$, there exists an A which realizes , (X) by ω_2 -saturation. Then A is internal U-nowhere dense and $B \subseteq A$, a contradiction.

Case 3: $U \neq x/\mathbb{N}$ for any $x \in \mathcal{H}$ and $ci(U) = \kappa \leq \omega_1$.

Let $\langle y_{\alpha} : \alpha < \kappa \rangle$ be decreasing and coinitial in $\mathcal{H} - U$ such that $y_{\alpha}/y_{\alpha+1} > n$ for all $n \in \mathbb{N}$ (there is such a sequence because $U \neq x/\mathbb{N}$).

Let

,
$$(X) = \{g_X(y_\alpha) \ge y_{\alpha+1} : \alpha < \kappa\} \bigcup \{F \subseteq X : F \in [B]^{<\omega}\}.$$

Then, (X) is finitely satisfiable for the same reason as in Case 2. By ω_2 -saturation there exists an internal U-nowhere dense set A which covers B, a contradiction.

Case 4:
$$U$$
 is a $(\geq \omega_2, \geq \omega_2)$ cut.
Let $D(B) = \{ |x - y| : x, y \in B \}$. Then $card(D(B)) \leq \omega_1$. Hence
 $\exists x, y \in \mathcal{H} \ (x \notin U \text{ and } y \in U \text{ such that } [y, x] \cap D(B) = \emptyset).$

Let

$$, (X) = \{ \forall z \in \mathcal{H} (3y \le z \le x \to g_X(z) \ge [z/3]) \} \bigcup \{ F \subseteq X : F \in [B]^{<\omega} \}$$

Claim: , (X) is finitely satisfiable.

Proof of the claim: Let F be any finite subset of $B, z \in [3y, x]$ and [c, d] be an interval of \mathcal{H} such that $|d - c| \geq z$. Let $J_1 = [c, c + [z/3]], J_2 = [c + [z/3] + 1, c + 2[z/3]]$ and $J_3 = [c + 2[z/3] + 1, c + 3[z/3]]$. Then $J_1 \cap F \neq \emptyset$ implies $J_3 \cap F = \emptyset$ because $D(B) \cap [y, x] = \emptyset$. So $g_F(z) \geq [z/3]$ and this ends the proof of the claim. By ω_2 -saturation there exists an internal U-nowhere dense subset of \mathcal{H} which covers B, a contradiction. \Box

References

- [CK] Chang C. C. and Keisler H. J., Model Theory, North-Holland, 1973. (Third edition, 1990.)
- [KKLM] Keisler H. J., Kunen K., Leth S. and Miller A. W., "Descriptive set theory over hyperfinite sets", The Journal of Symbolic Logic, Vol. 54, No. 4 (1989), 1167—1180.
- [KL] Keisler H. J. and Leth S., "Meager sets on the hyperfinite time line", The Journal of Symbolic Logic, Vol. 56, No. 1 (1991), 71—102.
- [Lo] Loeb P., "Conversion from nonstandard to standard measure space and applications in probability theory", Trans. Amer. Math. Soc., 211 (1975), 113—122.
- [M1] Miller A. W., "Special subsets of the real line", pp. 201—234 in Handbook of Set Theoretic Topology, ed. by K. Kunen and J. E. Vaughan, North-Holland 1984.

- [M2] Miller A. W., "Set theoretic properties of Loeb measure", The Journal of Symbolic Logic, Vol. 55, No. 3 (1990), 1022—1036.
- [SB] Stroyan K. D. and Bayod J. M., Foundation of Infinitesimal Stochastic Analysis, North-Holland, 1986.
- [Zi] Živaljević B. "U-meager sets when the cofinality and the coinitiality of U are uncountable", The Journal of Symbolic Logic, Vol. 56, No. 3 (1991), 906—914.

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA.