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Abstract

Let A and B be two infinite sets of non-negative integers. Similar to Kneser’s
Theorem (Theorem 1.1 bellow) we characterize the structure of A + B when
the upper Banach density of A + B is less than the sum of the upper Banach
density of A and the upper Banach density of B.

1 Introduction

By an interval in this paper, we always mean an interval of integers. For each set

A of non-negative integers the Shnirel’man density σ(A) and the lower asymptotic

density d(A) of A are defined by

σ(A) = inf
n>1

A(n)

n
and d(A) = lim inf

n→∞

A(n)

n

where A(n) = |A∩ [1, n]| is the number of elements in A between 1 and n. Let A±B
denote the set {a± b : a ∈ A and b ∈ B}. In order to check whether the celebrated

Mann’s Theorem (cf. [12]) remains true if Shnirel’man density is replaced by lower

asymptotic density, Kneser proved the following Theorem 1.1, which indicates that

if Mann’s inequality is not true for d, then A + B must essentially be the union of

arithmetic progressions of the same difference. For two infinite sets A,B ⊆ N, A ∼ B

means that the symmetric difference of A and B is a finite set. For a positive integer
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g and a finite set G ⊆ [0, g − 1] let gN = {gn : n ∈ N} and G + gN = {a + gn : a ∈
G and n ∈ N}1.

Theorem 1.1 (M. Kneser, 1953) If d(A + B) < d(A) + d(B), then there exist

g > 0 and G ⊆ [0, g − 1] such that

1. d(A+B) > d(A) + d(B)− 1
g

and

2. A+B ⊆ (G+ gN) and (A+B) ∼ (G+ gN).

The proof of above theorem can be found in [6, page 51–75]2.

Naturally people may wonder whether one can have a similar theorem for upper

asymptotic density. The upper asymptotic density d(A) of A is defined by

d(A) = lim sup
n→∞

A(n)

n
.

Although the definition of upper asymptotic density looks similar to the definition of

lower asymptotic density, their behaviors are very different. In fact d(A+B) can be

much smaller than d(A) + d(B) without requiring A+ B being a large subset of the

union of arithmetic progressions of the same difference (cf. [10]).

The next natural candidate to consider is upper Banach density. The upper

Banach density BD(A) of a set A is defined by

BD(A) = lim
k→∞

sup
n>0

A(n, n+ k)

k + 1

where A(a, b) = |A∩ [a, b]|. Upper Banach density is popular among mathematicians

who work on combinatorial number theory problems using ergodic methods (cf. [1, 5]).

Clearly, we have

0 6 σ(A) 6 d(A) 6 d(A) 6 BD(A) 6 1.

It is easy to see that α = BD(A) iff α is the greatest real number satisfying that there

is a sequence of intervals {[an, bn] : n ∈ N} such that

lim
n→∞

(bn − an) =∞ and lim
n→∞

A(an, bn)

bn − an + 1
= α. (1)

1In some literature gA represents the g-fold sum of A. Since only the sum of two sets is considered
in this paper, we would like to write A + A instead of 2A so that the term gN can be reserved for
the set of all multiples of g without ambiguity.

2Kneser’s Theorem actually deals with multiple sum of sets. Here, for simplicity, we state only
the version for the sum of two sets.
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Although upper Banach density is farther away from lower asymptotic density

than upper asymptotic density, the behavior of upper Banach density is much more

similar to the behavior of lower asymptotic density than that of upper asymptotic

density. In [8] a general scheme is introduced that one can obtain a theorem about

upper Banach density parallel to each existing theorem about Shnirel’man density or

lower asymptotic density. For example, [9, Theorem 3.8] is derived for upper Banach

density parallel to Theorem 1.1. However, a simple application of the scheme in [9]

only allow us to characterize the structure of A + B in a very small portion of N,

which is far from satisfactory.

As the first attempt Bihani and the author dealt with the sum of two copies of

the same set in the following theorem proved in [2].

Theorem 1.2 (P. Bihani and R. Jin) Let A ⊆ N be such that BD(A) = α and

BD(A+ A) < 2α. Then there are positive g ∈ N and G ⊆ [0, g − 1] such that

1. BD(A+ A) > 2α− 1
g
,

2. A+ A ⊆ G+ gN, and

3. if {[an, bn] : n ∈ N} is a sequence of intervals satisfying (1), then there exist

[cn, dn] ⊆ [an, bn] such that

lim
n→∞

dn − cn
bn − an

= 1 and (A+A)∩ [2cn, 2dn] = (G+gN)∩ [2cn, 2dn] for all n ∈ N.

Remark 1.3 (1) In Theorem 1.2 the structure of A+A is characterized in
⋃

n∈N[2cn, 2dn],

which is, in some sense, the maximal possible portion of N for characterizing the

structure of A+ A.

(2) It is usually difficult to generalize this kind of results from the sum of two

copies of the same set A+A to the sum of two distinct sets A+B. For example, in

the case of finite sets, Freiman’s 2k−1+b Theorem (cf. [14, Theorem 1.16]) for A+A

is generalized by Lev and Smeliansky to A + B (cf. [14, Theorem 4.6]) with a much

harder proof. Furthermore, Freiman’s 3k−3 Theorem (cf. [4]) and the author’s result

about A + A (cf. [11, Theorem 1.4]) do not even have counterparts for A + B. In

order to generalize Theorem 1.2 to the sum of two distinct sets A+B, some obstacles

need to be overcome.

3



Since Kneser’s Theorem works for A + B, the result above about A + A is not

parallel to Kneser’s Theorem. We have been looking for a theorem about A + B

since Theorem 1.2 was proved. We accomplished this goal recently and obtained the

following result, which is the main theorem of the paper.

Theorem 1.4 Let A,B ⊆ N be such that BD(A) = α, BD(B) = β, and BD(A+B) <

α + β. Then there are positive g ∈ N and G ⊆ [0, g − 1] such that

1. BD(A+B) > α + β − 1
g
,

2. A+B ⊆ G+ gN,

3. if
{[
a

(i)
n , b

(i)
n

]
: n ∈ N

}
for i = 1, 2 are two sequences of intervals such that

lim
n→∞

(
b(i)
n − a(i)

n

)
=∞ for i = 1, 2, (2)

lim
n→∞

A
(
a

(1)
n , b

(1)
n

)
b

(1)
n − a(1)

n + 1
= α, lim

n→∞

B
(
a

(2)
n , b

(2)
n

)
b

(2)
n − a(2)

n + 1
= β, (3)

and

0 < lim inf
n→∞

b
(1)
n − a(1)

n

b
(2)
n − a(2)

n

6 lim sup
n→∞

b
(1)
n − a(1)

n

b
(2)
n − a(2)

n

<∞, (4)

then there exist
[
c

(i)
n , d

(i)
n

]
⊆
[
a

(i)
n , b

(i)
n

]
for each n ∈ N and i = 1, 2 such that

lim
n→∞

d
(i)
n − c(i)

n

b
(i)
n − a(i)

n

= 1 (5)

and

(A+B) ∩
[
c(1)
n + c(2)

n , d(1)
n + d(2)

n

]
= (G+ gN) ∩

[
c(1)
n + c(2)

n , d(1)
n + d(2)

n

]
. (6)

Obviously, Theorem 1.4 is motivated by Theorem 1.1. In order to prove Theorem

1.4 we have to deal with some obstacles which do not occur when A = B. We would

like to discuss two of the obstacles. The first one is that we need to explain why (4),

which is trivial when A = B, should be imposed. The following example shows that

(4) is necessary.
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Example 1.5 Let

A =
∞⋃

n=1

([
2(2n)2 , 1.5× 2(2n)2 − 2(2n−1)2+1

]
∪
[
1.5× 2(2n)2 + 2(2n−1)2+1, 2× 2(2n)2

])

B =
∞⋃

n=1

([
2(2n+1)2 , 1.5× 2(2n+1)2 − 2(2n)2+1

]
∪
[
1.5× 2(2n+1)2 + 2(2n)2+1, 2× 2(2n+1)2

])
.

We have BD(A) = α = BD(B) = β = 1. Hence BD(A+B) < BD(A) +BD(B). Let

a
(1)
n = 2(2n)2, b

(1)
n = 2 × 2(2n)2, a

(2)
n = 2(2n+1)2, and b

(2)
n = 2 × 2(2n+1)2. Then (2) and

(3) are true. However, (5) and (6) cannot be true for this pair of A and B because

(A+B) ∩
[
a

(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
has large gaps in the middle of the interval.

Note that (4) depends on the indexing of the intervals in the sequence. However,

no matter how these intervals in Example 1.5 are indexed, (4) can never be true. The

problem indicated by Example 1.5 is caused by the difference of magnitude between

the length of
[
a

(1)
n , b

(1)
n

]
and the length of

[
a

(2)
n , b

(2)
n

]
. This is why we have to impose

(4) in order to have the desired structure (6).

Note that the upper Banach density of A+B really measures the “size” of A+B

on a sequence of intervals without having any restrictions on how far these intervals

can be from each other. It might give us a wrong impression that the structure of

(A + B) ∩
[
a

(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
should be determined only by A ∩

[
a

(1)
n , b

(1)
n

]
and

B ∩
[
a

(2)
n , b

(2)
n

]
.

Example 1.6 Let A1 = 9 · [0, 3n], A2 = 9 · [3× 3n, 4× 3n], B1 = 3 · [0, 3× 3n], and

B2 = {0, 1, 2}+ 9·[3× 3n, 4× 3n]. We have roughly that the “density” of A1 and A2

are 1
9
, the “density” of B1 and B2 are 1

3
, and the “density” of (A1 ∪A2) + (B1 ∪B2)

is 1
3
, which is less than 1

9
+ 1

3
. However, the structure of A1 +B1 is different from the

structure of A2+B2. Hence we don’t have a uniform structure for (A1∪A2)+(B1∪B2).

Example 1.6 shows that if the structure of (A+B) ∩
[
a

(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
were

determined by A∩
[
a

(1)
n , b

(1)
n

]
and B∩

[
a

(2)
n , b

(2)
n

]
, then part 2 of Theorem 1.4 together

with (5) and (6) in part 3 of Theorem 1.4 would not be simultaneously true. This

means that we could only characterize the structure of A + B piecewisely in each[
a

(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
instead of the uniform structure described in Theorem 1.4.

Fortunately, the structure of (A + B) ∩
[
a

(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
is also influenced by
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the elements of A and B outside of
[
a

(1)
n , b

(1)
n

]
and

[
a

(2)
n , b

(2)
n

]
, respectively. In fact,

the main difficulty in the proof of Theorem 1.4 is to eliminate the possible cases

resembling Example 1.6 (cf. Claim 3.2 in the proof of Theorem 1.4).

As observed in the analogous situation in [2, Theorem 1.1], Theorem 1.4 is, in some

sense, optimal. Since the upper Banach densities of A and B are determined by the

sizes of A and B along two correspondent sequences of intervals
{[
a

(i)
n , b

(i)
n

]
: n ∈ N

}
for i = 1, 2 (cf. (3)), we can only hope to characterize the structure of A + B in⋃

n∈N

[
a

(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
. Note that there seems to be some flexibility in labeling

intervals in
{[
a

(1)
n , b

(1)
n

]
: n ∈ N

}
and in

{[
a

(2)
n , b

(2)
n

]
: n ∈ N

}
. For example, if we

rename
[
a

(1)
n , b

(1)
n

]
by
[
ā

(1)
n+100, b̄

(1)
n+100

]
and define

[
ā

(1)
n , b̄

(1)
n

]
= [0, 0] for n = 0, 1, . . . , 99,

do we still have the conclusion of Theorem 1.4 when
{[
a

(1)
n , b

(1)
n

]
: n ∈ N

}
is replaced

by
{[
ā

(1)
n , b̄

(1)
n

]
: n ∈ N

}
? The answer is “yes” as long as (4) is satisfied. Can we

replace
{[
c

(i)
n , d

(i)
n

]
: n ∈ N

}
by
{[
a

(i)
n , b

(i)
n

]
: n ∈ N

}
for i = 1, 2 in (6)? The answer

is “no” because if we delete small portion of elements from left or right side of A ∩[
a

(1)
n , b

(1)
n

]
or B∩

[
a

(2)
n , b

(2)
n

]
, then the upper Banach densities of A, B, and A+B will

not be changed. But the structure of (A+B) ∩
[
a

(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
will change.

One of the main features of this paper is that the methods from nonstandard

analysis are used in the proof in an essential way while the main result is a standard

theorem. It is interesting to see whether a shorter and essentially different standard

proof of Theorem 1.4 can be found. Nonstandard methods have been proved very

useful and efficient in, for example, [2, 8, 10, 11] when dealing with asymptotic ar-

guments. The reader is recommended to consult one of [2, 7, 8, 13] for the basic

notation, ideas, and principles in nonstandard analysis. Other introductory texts for

nonstandard analysis, which cover Loeb measure, should also be sufficient. If we work

within a nonstandard universe, we always assume that the nonstandard universe is

countably saturated.

From now on N denotes the set of all non-negative integers and Z denotes the

set of all integers. Capital letters A, B, C, and D usually represent sets of integers

and lower case letters a, b, c, d, e, g, h, etc. usually represent integers or real numbers.

Greek letters α, β, and γ are reserved for standard real numbers. For any r 6 s we

write [r, s] exclusively for the interval of all integers between r and s including r and

s if they are also integers. Let A± a be the abbreviation for A± {a} and a± A for
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{a} ± A. Let A[a, b] denote the set A ∩ [a, b] and A(a, b) denote the cardinality of

A[a, b]. Since the two terms A[a, b] and A(a, b) look very similar, the reader should

be aware of the distinction when read the rest of the paper.

2 Lemmas

This section contains some existing lemmas and some new lemmas, which will be

cited in the proof of Theorem 1.4. Lemmas up to 2.6 do not involve nonstandard

analysis. The last four lemmas do involve it. Note that since we do not assign any

properties distinguishing α and β, the properties of A and B are symmetric and this

will simplify proofs.

For a positive integer g let Z/gZ be the additive group of integers modulo g with

addition ⊕g. Let a, b, c ∈ [0, g − 1]. By a ⊕g b = c we mean a + b ≡ c (mod g). Let

πg : Z 7→ Z/gZ be the natural homomorphism from Z onto Z/gZ. If d > 0 and d|g,

we denote πg,d : Z/gZ 7→ Z/dZ the natural homomorphism from Z/gZ onto Z/dZ.

Note that the kernel of πg,d is 〈d〉g, which is the cyclic subgroup of Z/gZ generated by

the factor d of g. In fact, every subgroup of Z/gZ has the form 〈d〉g for some factor

d of g.

The first lemma is due to Kneser and the proof can be found in [14, page 115].

Lemma 2.1 (M. Kneser, 1953) Let (G,+) be an Abelian group and A,B be finite

subsets of G. Let S = {g ∈ G : g + A + B = A + B} be the stabilizer of A + B. If

|A + B| < |A| + |B|, then |A + B| = |A + S| + |B + S| − |S|. In particular, S is

non-trivial if |A+B| < |A|+ |B| − 1.

Note that the stabilizer S is always a subgroup of G and if |A+B| < |A|+ |B|−1,

then the stabilizer S of A+B is non-trivial, i.e., |S| > 1.

Let x be an integer, g > 0, and G ⊆ [0, g − 1]. We now state another version of

Theorem 1.1, which is more convenient for us to use in the proof of Theorem 1.4.

Lemma 2.2 Suppose d(A) = α, d(B) = β, and d(A + B) < α + β. Then there are

g > 0, F, F ′ ⊆ [0, g − 1] such that

1. A ⊆ F + gN, B ⊆ F ′ + gN, and

2. |F |+|F
′|

g
− 1

g
< α + β.
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We first prove that Theorem 1.1 implies Lemma 2.2.

Proof of Lemma 2.2 by Theorem 1.1: Let g > 0 be the least such integer and

G ⊆ [0, g − 1] be the set in Theorem 1.1. Let F, F ′ ⊆ [0, g − 1] be the minimal sets

such that A ⊆ F + gN and B ⊆ F ′ + gN, respectively. By the minimality of F and

F ′ we have that F ⊕g F
′ = G.

If |F | + |F ′| > |G| + 2, then |F ⊕g F
′| < |F | + |F ′| − 1. By Lemma 2.1 the

stabilizer S of F ⊕g F
′ is non-trivial. Let S = 〈d〉g for some proper factor d of g and

|S| = g/d = s > 1. Let Ḡ = πg,d(G). Then we have that A + B ∼ Ḡ + dN and

d(A+B) > α + β − 1
g
> α + β − 1

d
, which contradicts the minimality of g.

If |F | + |F ′| 6 |G|, then d(A + B) = |G|
g

> |F |
g

+ |F ′|
g

> d(A) + d(B), which

contradicts the assumption of the lemma.

Hence we can assume that |F | + |F ′| = |G| + 1. This implies that |F |+|F
′|

g
− 1

g
=

d(A+B) < α + β. 2

To prove that Lemma 2.2 implies Theorem 1.1 we need the following lemma, which

is the pigeonhole principle.

Lemma 2.3 Let A,B ⊆ gN be such that d(A) + d(B) > 1
g
. Then A + B ⊆ gN and

A+B ∼ gN.

Proof: Let m0 ∈ N be such that for any gn > m0,

A(0, gn) +B(0, gn)

gn+ g
>

1

g
.

Given any gn > m0, both A[0, gn] and ng−B[0, gn] are subsets of [0, gn]∩ gN. Since

|[0, gn] ∩ gN| = n+ 1 and A(0, gn) +B(0, gn) > n+ 1, then

A[0, gn] ∩ (gn−B[0, gn]) 6= ∅,

which implies gn ∈ A[0, gn] +B[0, gn] ⊆ A+B. Hence A+B ⊇ (gN r [0,m0]). 2

We now prove that Lemma 2.2 implies Theorem 1.1.

Proof of Theorem 1.1 by Lemma 2.2 Suppose Lemma 2.2 is true. Let d(A) = α,

d(B) = β, and d(A + B) < α + β. Let g > 0 be the least in Lemma 2.2 and

F, F ′ ⊆ [0, g− 1] be as described in Lemma 2.2. For each f ∈ F and f ′ ∈ F ′ we have

d(A ∩ (f + gN)) + d(B ∩ (f ′ + gN)) > α− |F | − 1

g
+ β − |F

′| − 1

g
>

1

g
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by 2. of Lemma 2.2. By Lemma 2.3 we have A+B ⊆ ((F ⊕g F
′) + gN) and A+B ∼

((F ⊕g F
′) + gN). Let G = F ⊕g F

′. If |G| > |F |+ |F ′|, then

d(A+B) =
|G|
g

>
|F |+ |F ′|

g
> α + β.

Thus we can assume |G| 6 |F | + |F ′| − 1. If |G| < |F | + |F ′| − 1, then by Lemma

2.1 we have |G| = |F + S| + |F ′ + S| − |S| where S is the non-trivial stablizer of G.

Let S = 〈d〉g. Let Ḡ = πg,d(G), F̄ = πg,d(F ), and F̄ ′ = πg,d(F ′). Then A ⊆ F̄ + dN,

B ⊆ F̄ ′ + dN, and

α + β > d(A+B) =
|Ḡ|
d

>
|F̄ |+ |F̄ ′|

d
− 1

d
.

This contradicts the minimality of g. Hence we can conclude that |G| = |F |+ |F ′|−1.

This finishes the proof of Theorem 1.1 because

d(A+B) =
|G|
g

=
|F |+ |F ′| − 1

g
> α + β − 1

g
.

2

Remark 2.4 1. From the proof of the equivalence between Theorem 1.1 and Lemma

2.2 one can see that the least g > 0 satisfying Lemma 2.2 and the least g satis-

fying Theorem 1.1 are the same.

2. If g is the least positive integer satisfying Lemma 2.2, then |F ⊕g F
′| = |F | +

|F ′| − 1.

3. When g is the least positive integer in Lemma 2.2 and f ∈ [0, g − 1] r F , there

always exists f ′ ∈ F ′ such that f ⊕g f
′ 6∈ F ⊕g F

′ because otherwise we have

|({f}∪F )⊕gF
′| < |({f}∪F )|+|F ′|−1, which implies that the stablizer S = 〈d〉g

of ({f} ∪ F ) ⊕g F
′ is non-trivial by Lemma 2.1. Hence A + B ⊆ Ḡ + dN and

A+B ∼ Ḡ+ dN where Ḡ = πg,d(F ⊕g F
′), which contradicts the minimality of

g.

4. As an easy consequence of 2. of Lemma 2.2 we have that α 6 |F |
g
< α+ 1

g
. This

implies that for each f ∈ F we have A ∩ (f + gN) 6= ∅.

5. In Lemma 2.2 if d is a proper factor of g and F̄ = πg,d(F ), then A ⊆ F + gN ⊆
F̄ + dN.

9



Lemma 2.5 Let A,B ⊆ N be such that d(A) = α, d(B) = β, and d(A+B) < α+β.

Let g > 0 be the least and F, F ′ ⊆ [0, g − 1] be the sets in Lemma 2.2. Suppose C

is another set such that C ⊆ F ′′ + gN for some F ′′ ⊆ [0, g − 1], |F | = |F ′′|, and

d(C) = α. Let f ∈ F ′′ and Cf = C ∩ (f + gN). Then d(A+B) + d(Cf ) > α + β.

Proof Note that the conditions of the lemma imply |F ⊕g F
′| = |F |+ |F ′|−1. Note

also that d(Cf ) > α− |F |−1
g

. Hence

d(A+B) + d(Cf ) >
|F |+ |F ′| − 1

g
+ α− |F | − 1

g
= α +

|F ′|
g

> α + β.

2

Lemma 2.6 Let C ⊆ N. Suppose g1, g2 > 0, G1 ⊆ [0, g1 − 1], and G2 ⊆ [0, g2 − 1]

such that C ⊆ (G1 + g1N), C ∼ (G1 + g1N), C ⊆ G2 + g2N, and C ∼ G2 + g2N.

If d = gcd(g1, g2) and Ḡ = πg1,d(G1) = πd(C) = πg2,(G2), then C ⊆ Ḡ + dN and

C ∼ Ḡ+ dN.

Proof The lemma is trivial if d = g1 or d = g2. Assume d < min{g1, g2}. Let

s, t ∈ Z such that sg1 + tg2 = d. Without loss of generality let sg1 > 0. Clearly,

C ⊆ (Ḡ + dN). Let (Gi + giN) r C ⊆ [0,mi − 1] for i = 1, 2. For each x ∈ C and

x > max{m1,m2} and for each k > 0 we want to show x + kd ∈ C. Since x > m1,

then x+ ksg1 ∈ C. Since x+ ksg1 + ktg2 = x+ kd > m2, then we have h+ kd ∈ C.

This clearly shows that C ⊆ Ḡ+ dN and C ∼ Ḡ+ dN. 2

The remaining lemmas in this section involve nonstandard analysis. For conve-

nience we introduce some notation. Let r, s ∈ ∗R. By r ≈ s we mean that r is

infinitesimally close to s, i.e., |r− s| is less than any positive standard real numbers.

By r � s we mean that r < s but r 6≈ s. By r / s we mean that r < s or r ≈ s.

We define r � s and r ' s in a symmetric way. Let H be a hyperfinite integer, i.e.,

H ∈ ∗N r N. Let

UH =
⋂
n∈N

[
0,
H

n

]
. (7)

Then UH is an initial segment of [0, H] and closed under addition. UH is often called

an additive cut. Note that if x ∈ UH , then x
H
≈ 0, and if x ∈ ∗N r UH , then

x
H
� 0. Since the sequence

{
H

n
: n ∈ N

}
is lower unbounded in ∗N r UH , then by

10



the countable saturation the cofinality of UH must be uncountable, i.e., any increasing

sequence {xn : n ∈ N} in UH must be upper bounded in UH .

Let x ∈ ∗N. Note that x + N is a copy of N in ∗N. Let C ⊆ x + N, g ∈ N, and

G ⊆ [0, g− 1]. We write C ∼ (G+ g ∗N)∩ (x+ N) if ((G+ g ∗N)∩ (x+ N))∆C is finite

where ∆ means the symmetric difference.

The first lemma below is a nonstandard equivalence of upper Banach density.

Lemma 2.7 Given α, for any set A ⊆ N, BD(A) > α iff there is an interval I =

[n, n+K] ⊆ ∗N for some hyperfinite integer K such that

∗A(n, n+K)

K + 1
' α.

Proof Suppose BD(A) > α. Then for each m ∈ N, there is an interval [n, n + k]

with k > m such that A(n,n+k)
k+1

> α − 1
m+1

. By the transfer principle, we can fix any

hyperfinite m and find an interval [n, n+K] with K > m such that

∗A(n, n+K)

K + 1
> α− 1

m+ 1
≈ α.

Suppose
∗A(n,n+K)

K+1
' α for some hyperfinite integer K. Then for each m ∈ N the

statement “there is an interval [a, a + k] with k > m such that
∗A(a,a+k)

k+1
> α − 1

m+1
”

is true because the interval [n, n + K] is a witness. By the transfer principle we can

find an interval [am, bm] ⊆ N with bm − am > m such that A(am,bm)
bm−am+1

> α− 1
m+1

. This

implies BD(A) > α. 2

Let Ω be a hyperfinite set, i.e., Ω is an internal set and the internal cardinality of

Ω is a hyperfinite integer. Let Σ0 be the family of all internal subsets of Ω. For each

A ∈ Σ0 we can define the normalized counting measure µ of A by µ(A) = st(|A|/H)

where st is the standard part map. Then the finitely–additive measure space (Ω,Σ0, µ)

can generate a countably–additive, complete, atom–less probability space (Ω,Σ, µ)

called Loeb space (generated by the normalized counting measure) on Ω.

By Lemma 2.7, the transfer principle, and Birkhoff Ergodic Theorem, one can

derive the following two lemmas, which establish the direct connections between lower

asymptotic density and upper Banach density. These two lemmas are actually [2,

Lemma 3.5] so that the reader can find the proofs in [2].

Lemma 2.8 Let A ⊆ N. If there exists x ∈ ∗N such that d((∗A− x) ∩ N) > α, then

BD(A) > α.

11



Lemma 2.9 Suppose A ⊆ N, BD(A) = α, and {[an, bn] : n ∈ N} is a sequence of

intervals of standard non-negative integers satisfying (1). Let N be any hyperfinite

integer and µ be the Loeb measure on the hyperfinite set [aN , bN ]. Then d((∗A− x) ∩
N) = α for µ–almost all x ∈ [aN , bN ].

The following lemma is similar to Lemma 2.5 in a nonstandard setting.

Lemma 2.10 Let H be hyperfinite and A,B ⊆ [0, H] be internal. Suppose for any

hyperfinite interval [a, b] ⊆ [0, H] with b−a
H
� 0 we have

A(a, b)

b− a+ 1
≈ α and

B(a, b)

b− a+ 1
≈ β.

Suppose also g > 0, F, F ′ ⊆ [0, g− 1], A ⊆ F + g ∗N, B ⊆ F ′+ g ∗N, |F ⊕g F
′| = |F |+

|F ′|−1, and |F |+|F
′|

g
− 1

g
< α+β. If C ⊆ [0, H] is another set such that C ⊆ F ′′+g ∗N

for some F ′′ ⊆ [0, g − 1] with |F | = |F ′′|, |C|
H+1
≈ α, and Cf ′′ = C ∩ (f ′′ + g ∗N), for

some f ′′ ∈ F ′′, then

(A+B)(0, H)

H + 1
+
Cf ′′(0, H)

H + 1
' α + β.

We would like to remark here that Lemma 2.10 is also true by a symmetric ar-

gument if we assume that C ⊆ F ′′ + g ∗N for some F ′′ ⊆ [0, g − 1] with |F ′| = |F ′′|,
|C|

H+1
≈ β, and Cf ′′ = C ∩ (f ′′ + g ∗N), for some f ′′ ∈ F ′′.

Proof Let f ∈ F , f ′ ∈ F ′, Af = A∩ (f + g ∗N), Bf ′ = B ∩ (f ′ + g ∗N), and U = UH

defined in (7). For each x ∈ ((f ⊕g f
′) + g ∗N)[0, H] r U we have

Af (0, x)

x+ 1
+
Bf ′(0, x)

x+ 1
' α− |F | − 1

g
+ β − |F

′| − 1

g
� 1

g
.

Hence Af [0, x]∩ (x−Bf ′)[0, x] 6= ∅. This implies x ∈ Af +Bf ′ . Therefore there exists

x0 ∈ U such that

(A+B) ∩ [x0, H] = ((F ⊕g F
′) + g ∗N) ∩ [x0, H].

Hence
(A+B)(0, H)

H + 1
≈ |F ⊕g F

′|
g

=
|F |+ |F ′|

g
− 1

g
.

Now we have

(A+B)(0, H)

H + 1
+
Cf ′′(0, H)

H + 1
'
|F |+ |F ′|

g
− 1

g
+ α− |F

′′| − 1

g
=
|F ′|
g

+ α > α + β.

2
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3 Proof of Theorem 1.4

Let A,B ⊆ N be such that BD(A) = α, BD(B) = β, and BD(A + B) < α + β. Let{[
a

(i)
n , b

(i)
n

]
: n ∈ N

}
for i = 1, 2 be two sequences of intervals of non-negative integers

such that (2), (3), and (4) are true. For each hyperfinite integer N , let

SN =
{
x ∈

[
a

(1)
N , b

(1)
N

]
: d((∗A− x) ∩ N) = α

}
and

TN =
{
y ∈

[
a

(2)
N , b

(2)
N

]
: d((∗B − y) ∩ N) = β

}
.

Note that SN has Loeb measure 1 in
[
a

(1)
N , b

(1)
N

]
and TN has Loeb measure 1 in[

a
(2)
N , b

(2)
N

]
by Lemma 2.9. Let N,N ′ be two hyperfinite integers. For each x ∈ SN

and y ∈ TN ′ we have that

d(((∗A− x) + (∗B − y)) ∩ N) < α + β

by Lemma 2.8. By Lemma 2.2 there exist the least gx,y > 0 and Fx,y, F
′
x,y ⊆ [0, gx,y−1]

such that ∗A∩(x+N) ⊆ Fx,y+gx,y
∗N, ∗B∩(y+N) ⊆ F ′x,y+gx,y

∗N,
|Fx,y |+|F ′x,y |−1

gx,y
< α+β,

and |Fx,y ⊕gx,y F
′
x,y| = |Fx,y|+ |F ′x,y| − 1. Note that we also have

(∗A ∩ (x+ N)) + (∗B ∩ (y + N)) ⊆
(
(Fx,y ⊕gx,y F

′
x,y) + gx,y

∗N
)
∩ (x+ y + N),

(∗A ∩ (x+ N)) + (∗B ∩ (y + N)) ∼
(
(Fx,y ⊕gx,y F

′
x,y) + gx,y

∗N
)
∩ (x+ y + N),

and
|Fx,y⊕gx,y F ′x,y |

gx,y
> α + β − 1

gx,y
by Theorem 1.1. Let Gx,y = Fx,y ⊕gx,y F

′
x,y.

We divide the main part of the proof in two claims. In the first claim we charac-

terize the structure of ∗A
[
a

(1)
N , b

(1)
N

]
, ∗B

[
a

(2)
N , b

(2)
N

]
, and ∗A

[
a

(1)
N , b

(1)
N

]
+ ∗B

[
a

(2)
N , b

(2)
N

]
for each hyperfinite integer N . In the second claim we characterize the structure of

(∗A + ∗B) r N. The second claim eliminates the possibility of the sets of A and B

similar to the sets in Example 1.6. Then we use the transfer principle to pull down the

structural property of ∗A + ∗B in the nonstandard model to the structural property

of A+B in the standard world to finish the proof.

Note that there exist two fixed standard positive real numbers γ and γ′ such that

γ 6
b

(1)
N − a

(1)
N

b
(2)
N − a

(2)
N

6 γ′ (8)

for every hyperfinite integer N by (4) and the transfer principle.

13



Claim 3.1 Given a hyperfinite integer N , there exist gN ∈ N, FN , F
′
N , GN ⊆ [0, gN−

1], and
[
c

(i)
N , d

(i)
N

]
⊆
[
a

(i)
N , b

(i)
N

]
for i = 1, 2 such that

∗A
[
a

(1)
N , b

(1)
N

]
⊆ (FN + gN

∗N),

∗B
[
a

(2)
N , b

(2)
N

]
⊆ (F ′N + gN

∗N),

FN ⊕g F
′
N = GN and |GN | = |FN |+ |F ′N | − 1,

α + β − 1

gN

6
|FN |+ |F ′N | − 1

gN

< α + β,

d
(i)
N − c

(i)
N

b
(i)
N − a

(i)
N

≈ 1 for i = 1, 2,(
∗A
[
a

(1)
N , b

(1)
N

]
+ ∗B

[
a

(2)
N , b

(2)
N

])
⊆ GN + gN

∗N, and

(
∗A
[
a

(1)
N , b

(1)
N

]
+ ∗B

[
a

(2)
N , b

(2)
N

])
∩
[
c

(1)
N + c

(2)
N , d

(1)
N + d

(2)
N

]
= (GN + gN

∗N) ∩
[
c

(1)
N + c

(2)
N , d

(1)
N + d

(2)
N

]
.

Proof of Claim 3.1 Let H = b
(1)
N − a

(1)
N and let U = UH as defined in (7). Note

that if we use H = b
(2)
N − a

(2)
N or H = b

(1)
N − a

(1)
N + b

(2)
N − a

(2)
N to define U we will get

exactly the same U due to (8). Note also that by the transfer principle we have

∗A
(
a

(1)
N , b

(1)
N

)
b

(1)
N − a

(1)
N + 1

≈ α and

∗B
(
a

(2)
N , b

(2)
N

)
b

(2)
N − a

(2)
N + 1

≈ β.

Subclaim 3.1.1 There are x0 ∈ a
(1)
N + U and y0 ∈ a

(2)
N + U such that for all

x ∈
[
x0, b

(1)
N

]
with x− x0 being hyperfinite and for all y ∈

[
y0, b

(2)
N

]
with y− y0 being

hyperfinite we have

∗A(x0, x)

x− x0 + 1
≈ α and

∗B(y0, y)

y − y0 + 1
≈ β.

Proof of Subclaim 3.1.1 We find x0, the argument for y0 is analogous. Let

ck = a
(1)
N + [(b

(1)
N − a

(1)
N )/(k + 1)] for every k ∈ N. Note that

⋂
k∈N[a

(1)
N , ck] = a

(1)
N + U .

For every k ∈ N define the internal sets

Xk =

{
m ∈ [a

(1)
N , ck] : ∀x ∈ [m+ 1, b

(1)
N ]

(∗A(m+ 1, x)

x−m
> α− 1

k + 1

)}
.
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Clearly, Xk ⊇ Xk+1 for every k ∈ N. Suppose Xk = ∅ for some k ∈ N. Let

x ∈ [a
(1)
N , b

(1)
N ] the largest number such that

∗A
(
a

(1)
N + 1, x

)
x− a(1)

N

6 α − 1

k + 1
if it exists,

or b
(1)
N otherwise. Clearly, x 6∈ b(1)

N −U because otherwise we have

∗A
(
a

(1)
N , b

(1)
N

)
b

(1)
N − a

(1)
N + 1

� α.

Since Xk = ∅, we have x > ck. Since
∗A(a

(1)
N , x)

x− a(1)
N + 1

� α, we have
∗A(x+ 1, b

(1)
N )

b
(1)
N − x

� α.

This implies BD(A) > α by Lemma 2.7, which contradicts the assumption that

BD(A) = α. Hence Xk 6= ∅ for every k ∈ N. By countable saturation we can find

m ∈
⋂

k∈NXk. Let x0 = m + 1. Since x0 < ck for every k ∈ N, then x0 ∈ a(1)
N + U .

Now for each x ∈ [x0, b
(1)
N ] we have

∗A(x0, x)

x− x0 + 1
' α. When x − x0 is hyperfinite,

∗A(x0, x)

x− x0 + 1
� α would imply BD(A) > α. Hence we have

∗A(x0, x)

x− x0 + 1
≈ α whenever

x− x0 is hyperfinite. 2

We continue to prove Claim 3.1. By the definition of x0 and y0 and Lemma 2.8 we

have that d((∗A−x0)∩N) = α and d((∗B−y0)∩N) = β. Hence x0 ∈ SN and y0 ∈ TN .

Let gN = gx0,y0 , FN = Fx0,y0 , and F ′N = F ′x0,y0
. Note that |GN | = |FN | + |F ′N | − 1

where GN = FN ⊕gN
F ′N . We need to show that gN , FN , F

′
N , GN are what we are

looking for. Since

((∗A ∩ (x0 + N)) + (∗B ∩ (y0 + N))) ⊆ (GN + gN
∗N) ∩ (x0 + y0 + N) and

((∗A ∩ (x0 + N)) + (∗B ∩ (y0 + N))) ∼ (GN + gN
∗N) ∩ (x0 + y0 + N),

we conclude, by the overspill principle, that there is a hyperfinite integer K such that

∗A[x0, x0 +K] ⊆ FN + gN
∗N, ∗B[y0, y0 +K] ⊆ F ′N + gN

∗N,

and (∗A+ ∗B)[z0, z0 +K] = (G+ g ∗N) ∩ [z0, z0 +K]

for some z0 ∈ x0 + y0 + N.

Subclaim 3.1.2 ∗A
[
x0, b

(1)
N

]
⊆ FN + gN

∗N and ∗B
[
y0, b

(2)
N

]
⊆ F ′N + gN

∗N.

Proof of Subclaim 3.1.2 Assume the contrary. Without loss of generality, let

x be the least element in ∗A
[
x0, b

(1)
N

]
r (FN + gN

∗N) such that ∗B[y0, y0 + (x− x0)−
1] ⊆ F ′N + gN

∗N. By Remark 2.4.3 there is f ′ ∈ F ′N such that (πgN
(x)⊕gN

f ′) 6∈
(FN ⊕gN

F ′N); let ∗Bf ′ = ∗B ∩ (f ′ + gN
∗N). Note that x− x0 > K. Let d =

[
x−x0

2

]
.
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By Subclaim 3.1.1 we have
∗A(x0,x0+2d)

2d
≈ α, which implies that for any x0 6 a <

b 6 x0 +2d with b−a
2d
� 0,

∗A(a,b)
b−a

≈ α. This is true because of the following argument:

if
∗A(a,b)

b−a
� α, then BD(A) > α by Lemma 2.7, which contradicts BD(A) = α; if

∗A(a,b)
b−a

� α, then
∗A(x0,x0+2d)

2d
≈ α implies that either a−x0

2d
� 0 and

∗A(x0,a)
a−x0

� α or
x0+2d−b

2d
� 0 and

∗A(b,x0+2d)
x0+2d−b

� α. Note that either case above contradicts BD(A) = α

again by Lemma 2.7.

By the same reason we have that for any y0 6 a < b 6 y0 + 2d with b−a
2d
� 0,

∗B(a,b)
b−a

≈ β. Then by Lemma 2.10 we have

(∗A+ ∗B)(x0 + y0 + 2d, x0 + y0 + 3d)

d+ 1

'
(∗A[x0 + d, x0 + 2d− 1] + ∗B[y0 + d, y0 + 2d− 1])(x0 + y0 + 2d, x0 + y0 + 3d)

d+ 1

+
(x+ ∗Bf ′ [y0, y0 + d])(x0 + y0 + 2d, x0 + y0 + 3d)

d+ 1
' α + β,

which contradicts BD(A+B) < α + β by Lemma 2.7. 2

Subclaim 3.1.3 ∗A
[
a

(1)
N , b

(1)
N

]
⊆ FN + gN

∗N and ∗B
[
a

(2)
N , b

(2)
N

]
⊆ F ′N + gN

∗N.

Proof of Subclaim 3.1.3 Assume the contrary. Then there is, without loss of

generality, z ∈ ∗A
[
a

(1)
N , x0

]
r (FN + gN

∗N). Let f ′ ∈ F ′N be such that πgN
(z)⊕gN

f ′ 6∈

FN⊕gN
F ′N and ∗Bf ′ = ∗B∩(f ′+gN

∗N). Choose x1 ∈
[
x0, b

(1)
N

]
such that x1 6∈ x0 +U ,

x0 + 2(x1 − x0) < b
(1)
N , and y0 + 3(x1 − x0) < b

(2)
N . Let d = x1 − x0. Note that

x0 − z ∈ U and d 6∈ U , which implies that x0−z
d
≈ 0. By the same reason as in the

proof of Subclaim 3.1.2 we can apply Lemma 2.10 to obtain that

(∗A+ ∗B)(x0 + y0 + 2d, x0 + y0 + 3d)

d+ 1

'
(∗A[x0 + d, x0 + 2d] + ∗B[y0 + d, y0 + 2d])(x0 + y0 + 2d, x0 + y0 + 3d)

d+ 1

+
|z + ∗Bf ′ [y0 + 2d+ x0 − z, y0 + 3d+ x0 − z]|

d+ 1

≈ (∗A[x0 + d, x0 + 2d] + ∗B[y0 + d, y0 + 2d])(x0 + y0 + 2d, x0 + y0 + 3d)

d+ 1

+
∗Bf ′(y0 + 2d, y0 + 3d)

d+ 1
' α + β,

which contradicts BD(A+B) < α + β again by Lemma 2.7. 2
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Subclaim 3.1.4 There are
[
c

(i)
N , d

(i)
N

]
⊆
[
a

(i)
N , b

(i)
N

]
such that

d
(i)
N − c

(i)
N

b
(i)
N − a

(i)
N

≈ 1 (9)

for i = 1, 2 and (
∗A
[
a

(1)
N , b

(1)
N

]
+ ∗B

[
a

(2)
N , b

(2)
N

])
∩
[
c

(1)
N + c

(2)
N , d

(1)
N + d

(2)
N

]
= (GN + gN

∗N) ∩
[
c

(1)
N + c

(2)
N , d

(1)
N + d

(2)
N

]
.

Proof of Subclaim 3.1.4 By (4) we have

U
b
(1)
N −a

(1)
N

= U
b
(2)
N −a

(2)
N

= U
b
(1)
N +b

(2)
N −a

(1)
N −a

(2)
N
,

where UH is defined by (7). Let U = U
b
(1)
N −a

(1)
N

. By the same argument as in the proof

of Lemma 2.10 we can prove that for every z ∈ (GN +gN
∗N)∩

[
a

(1)
N + a

(2)
N , b

(1)
N + b

(2)
N

]
,

if z 6∈ a(1)
N + a

(2)
N + U and z 6∈ b(1)

N + b
(2)
N − U , then z ∈ ∗A

[
a

(1)
N , b

(1)
N

]
+ ∗B

[
a

(2)
N , b

(2)
N

]
.

Let u with

b
(1)
N + b

(2)
N > u >

a
(1)
N + b

(1)
N

2
+
a

(2)
N + b

(2)
N

2

be the greatest and l with

a
(1)
N + a

(2)
N 6 l <

a
(1)
N + b

(1)
N

2
+
a

(2)
N + b

(2)
N

2

be the least such that(
∗A
[
a

(1)
N , b

(1)
N

]
+ ∗B

[
a

(2)
N , b

(2)
N

])
∩ [l, u] = (GN + gN

∗N) ∩ [l, u].

Then l ∈ a(1)
N + a

(2)
N + U and u ∈ b(1)

N + b
(2)
N − U . It is now easy to select the desired

c
(i)
N ∈ a

(i)
N +U and d

(i)
N ∈ b

(i)
N −U for i = 1, 2 such that l = c

(1)
N +c

(2)
N and u = d

(1)
N +d

(2)
N .

This ends the proof of Claim 3.1. 2

Claim 3.2 There are g > 0 in N and F, F ′ ⊆ [0, g − 1] such that ∗A ⊆ F + g ∗N,
∗B ⊆ F ′ + g ∗N, |F ⊕g F

′| = |F |+ |F ′| − 1, and |F |+|F ′|−1
g

< α + β.
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In the applications of Claim 3.2 we always assume that g is the least positive

integer satisfying this claim.

Proof of Claim 3.2 Let BD(A+B) = γ < α+ β. Note that for every hyperfinite

integer N , ∣∣∣∗A [a(1)
N , b

(1)
N

]
+ ∗B

[
a

(2)
N , b

(2)
N

]∣∣∣
b

(1)
N + b

(2)
N − a

(1)
N − a

(2)
N + 1

≈ |GN |
gN

6 γ

by Lemma 2.7. Therefore, γ > α + β − 1
gN

. This implies that the set {gN : N ∈
∗N r N} ⊆ N is finite. Hence there are g0 ∈ N and F, F ′ ⊆ [0, g0 − 1] such that the

set

X0 = {N ∈ ∗N r N : gN = g0, FN = F, and F ′N = F ′}

is unbounded in ∗N. We will prove that g0, F , and F ′ are what we want for the claim.

It suffices to prove that ∗A ⊆ F + g0
∗N and ∗B ⊆ F ′ + g0

∗N.

Suppose the claim is not true and assume, without loss of generality, ∗A 6⊆ (F +

g0
∗N). Fix x ∈ ∗Ar (F + g0

∗N) and N0 ∈ X0. Since (2) and X0 is unbounded in ∗N,

there is a hyperfinite integer N ∈ X0 such that b
(2)
N − a

(2)
N > 2 max

{
b

(1)
N0
, x
}

. Choose

any x0 ∈ SN0 . Since TN has Loeb measure one in
[
a

(2)
N , b

(2)
N

]
, we can find y, y′ ∈ TN

such that x+ y = x0 + y′. Note that d((∗A− x0)∩N) = α, d((∗B − y′)∩N) = β, and

d(((∗A+ ∗B)− x0 − y′) ∩N) < α+ β. By Lemma 2.2 there is a least positive integer

gN,1 and sets FN,1, F
′
N,1, GN,1 ⊆ [0, gN,1 − 1] such that

∗A ∩ (x0 + N) ⊆ (FN,1 + gN,1
∗N), ∗B ∩ (y′ + N) ⊆ (F ′N,1 + gN,1

∗N),

|FN,1|+ |F ′N,1| − 1

gN,1

< α + β, and GN,1 = FN,1 ⊕gN,1
F ′N,1.

We have that |GN,1| = |FN,1|+ |F ′N,1| − 1,

(∗A ∩ (x0 + N)) + (∗B ∩ (y′ + N)) ⊆ (GN,1 + gN,1
∗N) ∩ (x0 + y′ + N), and

(∗A ∩ (x0 + N)) + (∗B ∩ (y′ + N)) ∼ (GN,1 + gN,1
∗N) ∩ (x0 + y′ + N).

By the definition of F and F ′ we also have

(∗A ∩ (x0 + N)) + (∗B ∩ (y′ + N)) ⊆ ((F ⊕g0 F
′) + g0

∗N) ∩ (x0 + y′ + N)) and

(∗A ∩ (x0 + N)) + (∗B ∩ (y′ + N)) ∼ ((F ⊕g0 F
′) + g0

∗N) ∩ (x0 + y′ + N)).
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Let d = gcd(g0, gN,1). Let Ḡ = πg0,d(F ⊕g0 F
′) = πgN,1,d(GN,1). By Lemma 2.6

(∗A ∩ (x0 + N)) + (∗B ∩ (y′ + N)) ⊆ (Ḡ+ d ∗N) ∩ (x0 + y′ + N) and

(∗A ∩ (x0 + N)) + (∗B ∩ (y′ + N)) ∼ (Ḡ+ d ∗N) ∩ (x0 + y′ + N).

Let d′|d be the least positive integer with ¯̄G = πg0,d′(F ⊕g0 F
′) such that the two

statements immediately above are true with d replaced by d′ and Ḡ replaced by ¯̄G.

Let ¯̄F = πg0,d′(F ) and ¯̄F
′

= πg0,d′(F
′). By Lemma 2.1 we have | ¯̄G| > | ¯̄F | + | ¯̄F

′
| − 1

by the minimality of d′. Hence |
¯̄F |+| ¯̄F ′|−1

d′
6 | ¯̄G|

d′
=
|F⊕g0F ′|

g0
< α + β. This implies that

d′ = gN,1 6 g0 by the minimality of gN,1.

If g0 = gN,1, then |F | = |FN,1| and |F ′| = |F ′N,1|. This implies x 6∈ (FN,1 + gN,1
∗N).

Let f ′1 ∈ F ′N,1 be such that
(
πgN,1

(x)⊕gN,1
f ′1
)
6∈
(
FN,1 ⊕gN,1

F ′N,1

)
and let ∗Bf ′1

=
∗B ∩ (f ′1 + gN,1

∗N). Then

d((∗A+ ∗B)− x0 − y′) ∩ N)

> d(((∗A− x0) ∩ N) + ((∗B − y′) ∩ N)) + d((∗Bf ′1
− y) ∩ N) > α + β

by Lemma 2.5, which contradicts BD(A + B) < α + β by Lemma 2.8. Hence we

conclude that d = gN,1 < g0 and x ∈ (FN,1 + gN,1
∗N). Clearly, FN,1 = πg0,gN,1

(F ),

F ′N,1 = πg0,gN,1
(F ′), and

|FN,1|+|F ′N,1|−1

gN,1
< α + β.

Now we have

∗A
[
a

(1)
N0
, b

(1)
N0

]
⊆
(

(F + g0
∗N) ∩

[
a

(1)
N0
, b

(1)
N0

])
⊆
(

(FN,1 + gN,1
∗N) ∩

[
a

(1)
N0
, b

(1)
N0

])
,

∗B
[
a

(2)
N0
, b

(2)
N0

]
⊆
(

(F ′ + g0
∗N) ∩

[
a

(2)
N0
, b

(2)
N0

])
⊆
(

(F ′N,1 + gN,1
∗N) ∩

[
a

(2)
N0
, b

(2)
N0

])
,

and
|FN,1|+|F ′N,1|−1

gN,1
< α + β, which contradict the minimality of gN0 = g0. This com-

pletes the proof of the claim. 2

Let g, F , and F ′ be in Claim 3.2 such that g is the least and let N be a hyperfinite

integer. We want to show that gN = g, FN = F , and F ′N = F for all hyperfinite N ,

which will complete the proof of the theorem.

Since |F |+|F
′|−1

g
< α + β, then

(∗A ∩ (x0 + N)) + (∗B ∩ (y0 + N)) ⊆ ((F ⊕g F
′) + g ∗N) ∩ (x0 + y0 + N) and

(∗A ∩ (x0 + N)) + (∗B ∩ (y0 + N)) ∼ ((F ⊕g F
′) + g ∗N) ∩ (x0 + y0 + N)
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where x0 and y0 are the elements from Subclaim 3.1.1. By the minimality of gN we

have g > gN and gN |g. Suppose g > gN . Let FN = πg,gN
(F ) and F ′N = πg,gN

(F ′).

Then ∗A ⊆ FN +gN
∗N, ∗B ⊆ F ′N +gN

∗N, and
|FN |+|F ′N |−1

gN
< α+β. Since |FN⊕gN

F ′N | =
|FN |+ |F ′N | − 1, we can replace g, F, F ′ by gN , FN , F

′
N in Claim 3.2, which contradict

the minimality of g. Therefore, we have gN = g. This clearly implies FN = F and

F ′N = F . Let G = F ⊕g F . We now translate the nonstandard statements to the

standard statements.

Clearly, (A+B) ⊆ (G+ gN) and BD(A+B) > |G|
g

= |F |+|F ′|−1
g

> α + β − 1
g
.

By Claim 3.1 we have that for every hyperfinite integer N there are
[
c

(i)
N , d

(i)
N

]
for

i = 1, 2 such that (9) is true and

(∗A+ ∗B) ∩
[
c

(1)
N + c

(2)
N , d

(1)
N + d

(2)
N

]
= (G+ g ∗N) ∩

[
c

(1)
N + c

(2)
N , d

(1)
N + d

(2)
N

]
.

For each m ∈ N let Dm be the set of all n ∈ ∗N such that there exist
[
c

(i)
n , d

(i)
n

]
⊆[

a
(i)
n , b

(i)
n

]
with

d
(i)
n − c(i)

n

b
(i)
n − a(i)

n

> 1− 1

m+ 1

for i = 1, 2 and

(∗A+ ∗B) ∩
[
c(1)
n + c(2)

n , d(1)
n + d(2)

n

]
= (G+ g ∗N) ∩

[
c(1)
n + c(2)

n , d(1)
n + d(2)

n

]
.

Clearly, Dm is an internal set and contains all hyperfinite integers. Let nm = minDm.

Then nm ∈ N, n0 = 0, and nm 6 nm+1. For eachm ∈ N and each n = nm, . . . , nm+1−1

let
[
c

(i)
n , d

(i)
n

]
⊆
[
a

(i)
n , b

(i)
n

]
be such that d

(i)
n −c

(i)
n

b
(i)
n −a

(i)
n

> 1− 1
m+1

for i = 1, 2 and

(A+B) ∩
[
c(1)
n + c(2)

n , d(1)
n + d(2)

n

]
= (G+ gN) ∩

[
c(1)
n + c(2)

n , d(1)
n + d(2)

n

]
.

It is now easy to check the sequence
{[
c

(i)
n , d

(i)
n

]
: n ∈ N

}
is what we want. This ends

the proof of Theorem 1.4. 2

4 A Question

In [3] the structure of A is characterized when d(A) is sufficiently small and d(A+A) 6

σd(A) for some σ > 2. When d(A + A) = 2d(A), the structure of A, as indicated

in [3], can be drastically different from the structure of A when d(A + A) < 2d(A).

20



For example, as described in [3], let ε > 0 be a small real number, α be an irrational

number, and

A =

{
n ∈ N : αn ≡ x (mod 1) and x ∈

(
1

2
− ε, 1

2
+ ε

)}
.

Then d(A) = 2ε and d(A+ A) = 4ε = 2d(A). Clearly, A+ A is not a large subset of

the union of arithmetic progressions of the same difference.

Question 4.1 What should be the structure of A, B, or the structure of A + B if

BD(A) = α > 0, BD(B) = β > 0, and BD(A+B) = α + β?

It should be easier to consider the special case of the question above for A = B.
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