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Kneser’s theorem for upper Banach density

par Prerna BIHANI et Renling JIN

Résumé. Supposons que A soit un ensemble d’entiers non négatifs
avec densité de Banach supérieure α (voir définition plus bas) et
que la densité de Banach supérieure de A + A soit inférieure à
2α. Nous caractérisons la structure de A + A en démontrant la
proposition suivante: il existe un entier positif g et un ensem-
ble W qui est l’union des [2αg − 1] suites arithmétiques1 avec la
même différence g tels que A + A ⊆ W et si [an, bn] est, pour
chaque n, un intervalle d’entiers tel que bn−an →∞ et la densité
relative de A dans [an, bn] approche α, il existe alors un intervalle
[cn, dn] ⊆ [an, bn] pour chaque n tel que (dn−cn)/(bn−an) → 1 et
(A + A) ∩ [2cn, 2dn] = W ∩ [2cn, 2dn].

Abstract. Suppose A is a set of non-negative integers with up-
per Banach density α (see definition below) and the upper Banach
density of A + A is less than 2α. We characterize the structure of
A+A by showing the following: There is a positive integer g and a
set W , which is the union of d2αg−1e arithmetic sequences1 with
the same difference g such that A+A ⊆ W and if [an, bn] for each
n is an interval of integers such that bn−an →∞ and the relative
density of A in [an, bn] approaches α, then there is an interval
[cn, dn] ⊆ [an, bn] for each n such that (dn − cn)/(bn − an) → 1
and (A + A) ∩ [2cn, 2dn] = W ∩ [2cn, 2dn].

1. Introduction

Let Z be the set of all integers and let N be the set of all non-negative
integers. Capital letters A, B, C, and D are always used for sets of inte-
gers and lower case letters a, b, c, d, e, g, h, etc. are always used for integers.
Greek letters α, β, γ, and ε are reserved for standard real numbers. For any
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a 6 b we write [a, b] exclusively for the interval of all integers between a and
b including a and b. We denote A±B for the set {a± b : a ∈ A & b ∈ B}.
We write A± a for A± {a} and a±A for {a} ±A. We denote kA for the
set {ka : a ∈ A}.2 Let A[a, b] denote the set A ∩ [a, b] and A(a, b) denote
the cardinality of A[a, b].

For any set A the upper Banach density of A, denoted by BD(A), is
defined by

BD(A) = lim
n→∞

sup
k>0

A(k, k + n)
n + 1

.

Clearly 0 6 BD(A) 6 1. It is easy to see that α = BD(A) iff α is
the greatest real number satisfying that there is a sequence of intervals
{[an, bn] : n ∈ N} such that

(I) lim
n→∞

(bn − an) = ∞ and lim
n→∞

A(an, bn)
bn − an + 1

= α.

The following is the main theorem of the paper.

Theorem 1.1. Let A be a set of non-negative integers such that BD(A) = α
and BD(A + A) < 2α. Let {[an, bn] : n ∈ N} be a sequence of intervals
satisfying (I). Then there are g ∈ N, G ⊆ [0, g − 1], and [cn, dn] ⊆ [an, bn]
for each n ∈ N such that

(1) |G| = m = d2αg − 1e,
(2) limn→∞

dn−cn
bn−an

= 1,
(3) A + A ⊆ G + gN,
(4) (A + A) ∩ [2cn, 2dn] = (G + gN) ∩ [2cn, 2dn] for all n ∈ N,
(5) BD(A + A) = m

g > 2α− 1
g .

Remark. (1) Since the upper Banach density of A is achieved in a se-
quence of intervals {[an, bn] : n ∈ N} satisfying (I), it is natural to
characterize the structure of (A + A) ∩ [2an, 2bn] because the part of
A outside of those intervals [an, bn] may have nothing to do with the
condition BD(A + A) < 2BD(A).

(2) The interval [cn, dn] in (4) of Theorem 1.1 cannot be replaced by
[an, bn] because if we delete, for example, the first and the last k num-
bers for a fixed k from A[an, bn] for every n ∈ N, then

lim
n→∞

A(an, bn)
bn − an + 1

= α

is still true.

2In some literature kA represents the k-fold sum of A. Since only the sum of two sets is
considered in this paper, we would like to write A + A instead of 2A so that the term gN can be
reserved for the set of all multiples of g without ambiguity.
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(3) Due to the asymptotic nature of the upper Banach density the asymp-
totic characterization of the length of [cn, dn] in (2) of Theorem 1.1
is the best we can do.

Theorem 1.1 is motivated by Kneser’s Theorem for lower asymptotic
density. For a set A the lower asymptotic density of A, denoted by d(A),
is defined by

d(A) = lim inf
n→∞

A(1, n)
n

.

The lower asymptotic density is one of the densities that are of classical
interest for many number theorists. Another classical density is Shnirel’man
density denoted by σ (see [4] or [11] for definition). It is often the case that a
theorem about the Shnirel’man density is obtained first and then a parallel
theorem about the lower asymptotic density is explored. In early 1940’s, H.
B. Mann proved a celebrated theorem, which says that if 0 ∈ A ∩ B, then
σ(A + B) > min{σ(A) + σ(B), 1}. Is the inequality true if the Shnirel’man
density is replaced by the lower asymptotic density? The answer is no and
the following is a trivial counterexample. We call that two sets A and B
are eventually same, denoted by A ∼ B, if A r [0,m] = B r [0,m] for some
m ∈ N.

Example. Let k, k′ > 0 and g > k + k′. Let A ⊆ [0, k − 1] + gN and
B ⊆ [0, k′ − 1] + gN be such that d(A) + d(B) > k+k′−1

g . Then A + B ⊆
[0, k + k′ − 2] + gN, A + B ∼ [0, k + k′ − 2] + gN, and d(A) + d(B)− 1

g 6
d(A + B) < d(A) + d(B).

However, Example 1 is basically the only reason that the inequality
d(A + B) < d(A) + d(B) can be true. More precisely Kneser proved the
following theorem.

Theorem 1.2 (M. Kneser, 1953). If d(A + B) < d(A) + d(B), then there
are g > 0 and G ⊆ [0, g − 1] with |G| = m such that

(1) A + B ⊆ G + gN,
(2) A + B ∼ G + gN, and
(3) d(A + B) = m

g > d(A) + d(B)− 1
g .

For any A and B with d(A + B) < d(A) + d(B) we define

gA,B = min{g ∈ N : There is a G ⊆ [0, g − 1](II)

satisfying (1)–(3) of Theorem 1.2.}

The original version of Kneser’s Theorem deals with the sum of multiple
sets. For brevity and the purpose of this paper we stated only a version for
the sum of two sets.
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In [6] the second author discovered a general scheme, with the help
of nonstandard analysis, how one can derive a theorem about the upper
Banach density parallel to each existing theorem about the Shnirel’man
density or the lower asymptotic density. The results in [6] can also be ob-
tained using an ergodic approach in symbolic dynamics (see [7] or [3]). In
[7, Theorem 3.8] the second author derived a result about the upper Banach
density, which is parallel to Kneser’s Theorem. The result characterizes the
structure of a very small portion of the sumset, i.e., in [7] one can only have
limn→∞(dn − cn) = ∞ in the place of (2) of Theorem 1.1. We believe that
the general scheme in [6] and the ergodic methods in [7] are not sufficient
for proving Theorem 1.1. In the following few sections we develop stronger
standard lemmas and extract more strength from nonstandard methods so
that we can have enough tools for proving Theorem 1.1.

2. Standard lemmas

In this section we first state some existing theorems as lemmas and then
prove some new lemmas without involving nonstandard analysis.

Lemma 2.1 (Birkhoff Ergodic Theorem). Suppose (Ω,Σ, µ) is a probability
space and T is a measure-preserving transformation from Ω to Ω. For any
function f ∈ L1(Ω), there exists a function f̄ ∈ L1(Ω) such that

µ({x ∈ Ω : lim
n→∞

1
n

n−1∑
m=0

f(Tm(x)) = f̄(x)}) = 1.

Birkhoff ergodic theorem can be found in [3, p.59] or in [12, p.30].

Lemma 2.2 (M. Kneser, 1953). Let G be an Abelian group and A,B be
finite subsets of G. Let S = {g ∈ G : g + A + B = A + B} be the stabilizer
of A + B. If |A + B| < |A|+ |B|, then |A + B| = |A + S|+ |B + S| − |S|.

Note that the stabilizer is always a subgroup of G and if |A + B| <
|A| + |B| − 1, then the stabilizer of A + B is non-trivial, i.e., |S| > 1.
Lemma 2.2 can be found in [11, p.115].

For a positive integer g let Z/gZ be the additive group of integers modulo
g. Let πg : Z 7→ Z/gZ be the natural homomorphism from Z onto Z/gZ.
If d > 0 and d|g, then we write πg,d : Z/gZ 7→ Z/dZ for the natural
homomorphism from Z/gZ onto Z/dZ. Let 〈d〉g be the kernel of πg,d, which
is a subgroup of Z/gZ. Note that every non-trivial subgroup of Z/gZ has
the form 〈d〉g for some proper factor d of g. We now state another version
of Theorem 1.2, which is convenient to use later.

Lemma 2.3. Suppose d(A) = d(B) = α and d(A + B) < 2α. Let g = gA,B

be as defined in (II) and let G ⊆ [0, g − 1] with |G| = m be such that
(1)–(3) of Theorem 1.2 are true. Then there are F, F ′ ⊆ [0, g − 1] with
|F | = |F ′| = k such that
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(1) A ⊆ F + gN and B ⊆ F ′ + gN,
(2) 2k − 1 = m,
(3) α > k

g −
1
2g .

Furthermore, for any a ∈ [0, g − 1] r F , there is a b ∈ F ′ such that a + b 6∈
G + gN.

Proof: Let F, F ′ ⊆ [0, g−1] be the minimal sets such that A ⊆ F +gN and
B ⊆ F ′+ gN, respectively. Let k = |F | and k′ = |F ′|. By the minimality of
F and F ′ we have that F +F ′+gN ∼ G+gN and hence πg[F +F ′] = πg[G].

If k + k′ > m + 2, then |πg[F ] + πg[F ′]| < k + k′ − 1. By Lemma 2.2 the
stabilizer S of πg[F ] + πg[F ′] is non-trivial. Let S = 〈d〉g for some proper
factor d of g and |S| = g/d = s > 1. Then

πg[A + B] = πg[G] = πg[F + F ′] = πg[G] + S.

This implies that

A + B ∼ G + gN ∼ G + {0, d, . . . , (s− 1)d}+ gN ∼ G′ + dN

where G′ ⊆ [0, d− 1] and πd[G] = πd[G′].
We also have that

d(A+B) =
|G|
g

=
|πg[G] + S|

g
=
|G′|
d

> d(A)+d(B)− 1
g

> d(A)+d(B)− 1
d
.

Hence (1)–(3) of Theorem 1.2 are true when g is replaced by d. This
contradicts the minimality of g = gA,B.

If k + k′ 6 m, then d(A + B) = m
g > k

g + k′

g > d(A) + d(B), which
contradicts the assumption of the lemma.

Hence we can assume that k + k′ − 1 = m.
If k 6= k′, say k < k′, then

2α > d(A + B) =
m

g
=

k + k′ − 1
g

>
2k

g
> 2d(A) = 2α,

which is absurd. Hence we have k = k′, which implies 2α > d(A+B) = 2k−1
g

and α > k
g −

1
2g .

Let a ∈ [0, g − 1] r F . If a + F ′ ⊆ G + gN, then |πg[F ∪ {a}] + πg[F ′]| =
m = 2k − 1 < |πg[F ∪ {a}]|+ |πg[F ′]| − 1. By Lemma 2.2 the stabilizer of
πg[G] is non-trivial. This contradicts the minimality of g. 2(Lemma 2.3)

Lemma 2.4. Let g > 0 and F ⊆ [0, g − 1] with |F | = k. If A ⊆ F + gN
and d(A) = α > k

g −
1
2g , then for any Aa = A ∩ (a + gN) where a ∈ F we

have d(Aa) > 1
2g .



328 Prerna Bihani, Renling Jin

Proof: Let Ā = A r Aa. Then Ā ⊆ (F r {a}) + gN. Hence

d(Aa) > d(A)− k − 1
g

= α− k − 1
g

>
k

g
− 1

2g
− k − 1

g
=

1
2g

.

2(Lemma 2.4)

Lemma 2.5. Let A,B ⊆ gN be such that d(A) > 1
2g and d(B) > 1

2g . Then
A + B ∼ gN.

Proof: Let m0 ∈ N be such that for any gn > m0,
A(0,gn)
gn+g > 1

2g and
B(0,gn)
gn+g > 1

2g . Given any gn > m0, both A[0, gn] and ng − B[0, gn] are
subsets of [0, gn]∩gN. Since |[0, gn]∩gN| = n+1 and A(0, gn)+B(0, gn) >
n + 1, then

A[0, gn] ∩ (gn−B[0, gn]) 6= ∅,
which implies gn ∈ A[0, gn] + B[0, gn] ⊆ A + B. Hence A + B ∼ gN.
2(Lemma 2.5)

Suppose A,B ⊆ N, d(A) = d(B) = α, g > 0, and F, F ′ ⊆ [0, g − 1]
with |F | = |F ′| = k such that (1) and (3) of Lemma 2.3 hold true, then
A + B ∼ F + F ′ + gN by Lemma 2.4 and Lemma 2.5.

Note that in Lemma 2.3, the sets F, F ′ and the number k are uniquely
determined by gA,B.

Lemma 2.6. Let d(A) = d(B) = α and d(A + B) < 2α. Let g = gA,B

be as defined in (II) and let G ⊆ [0, g − 1] with |G| = m be as defined in
Theorem 1.2. Let b ∈ B and Bb = B ∩ (b + gN). Then d(Bb) + m

g > 2α.

Proof: Let k = m+1
2 . By Lemma 2.3, there are F, F ′ ⊆ [0, g − 1] such

that |F | = |F ′| = k, A ⊆ F +gN, and B ⊆ F ′+gN. Let d(Bb) = β. Clearly
β 6 1

g . Since (B rBb) is a subset of the union of k−1 arithmetic sequences
of difference g, then

α = d(B) = d(Bb ∪ (B r Bb)) 6 β +
k − 1

g
,

which implies
k

g
> α− β +

1
g
.

Hence we have
2k − 1

g
> 2α− 2β +

1
g
.

This now implies that

d(Bb) +
m

g
= β +

2k − 1
g

> β + 2α− 2β +
1
g

> 2α− β +
1
g

> 2α.

2(Lemma 2.6)
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Lemma 2.7. Let d(A) = d(B) = α. Suppose there is a positive integer d
such that

(1) |πd[A]| 6= |πd[B]| and
(2) |πd[A + B]| > 2 min{|πd[A]|, |πd[B]|}.

Then d(A + B) > 2α.

Proof: Suppose d is the least positive integer satisfying the conditions of
the lemma. Let k = |πd[A]| and k′ = |πd[B]|. Let πd[A] = {u1, u2, . . . , uk}
and πd[B] = {v1, v2, . . . , vk′}. For each i = 1, 2, . . . , k let ai =
min(A ∩ π−1

d (ui)) and for each j = 1, 2, . . . , k′ let bj = min(B ∩ π−1
d (vj)).

Without loss of generality we assume k < k′.
Given any ε > 0, we want to show that d(A + B) > 2α− ε.
Let t = max({ai : i = 1, . . . , k} ∪ {bj : j = 1, . . . , k′}). Let m0 > t be

such that for every m > m0,

A(0,m)
m + 1 + t

> α− ε

2
and

B(0,m)
m + 1 + t

> α− ε

2
.

Fix an m > m0. For each i = 1, . . . , k let Ai = A[0,m] ∩ π−1
d (ui). Without

loss of generality we can assume that |A1| > |A2| > · · · > |Ak|. For each
i = 1, . . . , k let Ui = {u1, . . . , ui}.

Case 2.7.1 There is an r ∈ [1, k] such that |Ur + πd[B]| 6 2r − 1.
We want to show that Case 2.7.1 is impossible. Let r be the least number

satisfying the case. Since |Ur + πd[B]| 6 2r− 1 < r + k′− 1, by Lemma 2.2
the stabilizer S of Ur + πd[B] is non-trivial and

|Ur + πd[B]| = |Ur + S|+ |πd[B] + S| − |S|.

Let d′ < d and d′|d be such that S = 〈d′〉d. Then |S| = s = d/d′ > 1.
Suppose |πd[B] + S| > |Ur + S|. Since |Ur + S| and |πd[B] + S| are all

multiples of s, then |πd[B] + S| − |S| > |Ur + S|. Hence we have

|Ur + πd[B]| > 2|Ur + S| > 2r,

which contradicts the assumption of the case.
From the arguments above we can assume that |πd[B] + S| 6 |Ur + S|.

Now we have

|πd′ [B]| = |πd[B] + S|/s 6 |Ur + S|/s = |πd,d′ [Ur]|.

Suppose for each u ∈ {ur+1, . . . , uk} we have u + πd[B] ⊆ Ur + πd[B].
Then

|πd[A + B]| = |Ur + πd[B]| 6 2r − 1 < 2k,

which contradicts (2) of the lemma. Hence there is a u ∈ {ur+1, . . . , uk}
and there is a v ∈ πd[B] such that u + v 6∈ Ur + πd[B] = Ur + πd[B] + S.
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This implies πd,d′(u+ v) 6∈ πd,d′ [Ur] +πd′ [B] and πd,d′(u) 6∈ πd,d′ [Ur]. Hence
|πd′ [A]| > |πd,d′ [Ur]| > |πd′ [B]| and

|πd′ [A + B]|
> |πd,d′ [Ur ∪ {u}] + πd′ [B]| > 1 + |πd,d′ [Ur] + πd′ [B]|
= |πd,d′ [Ur]|+ |πd′ [B]| > 2|πd′ [B]|.

Hence d′ < d is a positive integer, which satisfies (1) and (2) of the lemma.
This contradicts the minimality of d. 2(Case 2.7.1)

Case 2.7.2 For every r ∈ [0, k], |Ur + πd[B]| > 2r.
By the assumption of the case, we can select, inductively on i, the ele-

ments wi,j ∈ Ui and zi,j ∈ πd[B] for j = 1, 2 such that {wi,j + zi,j : i =
1, . . . , k & j = 1, 2} in Z/dZ has the cardinality 2k. For each wi,j and zi,j

we have
|π−1

d (wi,j + zi,j) ∩ (A + B)[0,m + t]| > |Ai|
by the enumeration of Uk, the definition of t, and the choices of wi,j ’s.
Hence

(A + B)(0,m + t) >
k∑

i=1

2|Ai| = 2A(0,m).

This implies
(A + B)(0,m + t)

m + 1 + t
>

2A(0,m)
m + 1 + t

> 2(α− ε

2
) = 2α− ε.

2(Case 2.7.2)

Since Case 2.7.1 is impossible, then by Case 2.7.2 we have d(A + B) >
2α− ε. Now the lemma follows because ε > 0 is arbitrary. 2(Lemma 2.7)

The following lemma might be considered as trivial.

Lemma 2.8. Let g, g′ be positive and d = gcd(g, g′). Let G ⊆ [0, g − 1]
and G′ ⊆ [0, g′ − 1] be such that X = G + gZ = G′ + g′Z. Then there is an
F ⊆ [0, d− 1] such that X = F + dZ.

Proof: Let F ⊆ [0, d − 1] be minimal such that X ⊆ F + dZ. It suffices
to show F + dZ ⊆ X.

Let s, t ∈ Z be such that d = sg + tg′. Given any c ∈ F and n ∈ Z,
by the minimality of F we can find e ∈ G and k ∈ Z such that c + kd =
e. Hence c + nd = e + (n − k)d = e + (n − k)sg + (n − k)tg′. Clearly
e + (n − k)sg ∈ G + gZ. Hence e + (n − k)sg ∈ G′ + g′Z. This implies
e + (n− k)sg + (n− k)tg′ ∈ G′ + g′Z. Therefore, c + nd ∈ X. 2(Lemma
2.8)

Corollary 2.1. Let g, g′ be positive and d = gcd(g, g′). Let G ⊆ [0, g − 1]
and G′ ⊆ [0, g′ − 1]. If A ∼ G + gN and A ∼ G′ + g′N, then there is an
F ⊆ [0, d− 1] such that A ∼ F + dN.
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Proof: Since G + gN ∼ G′ + g′N, then G + gZ = G′ + g′Z. Hence by
Lemma 2.8 we have G + gZ = G′ + g′Z = F + dZ for some F ⊆ [0, d− 1].
This implies A ∼ F + dN. 2(Corollary 2.1)

We now prove a lemma, which may be interesting for its own sake.

Lemma 2.9. Suppose d(A) = d(B) = α, d(A + A) < 2α, and d(A + B) <
2α. Let g0 = gA,A and g1 = gA,B be as defined in (II). Then g0 = g1.

Proof: We proceed the proof in two claims. We show g0|g1 in the first
claim and show g0 = g1 in the second claim.

Claim 2.9.1 g0|g1.
Proof of Claim 2.9.1: By Lemma 2.3 we have k = |πg1 [A]| = |πg1 [B]|

and α > k
g1
− 1

2g1
. By Lemma 2.4 and Lemma 2.5 we can find a G ⊆ [0, g1−1]

such that A+A ∼ G+g1N. On the other hand there is a G′ ⊆ [0, g0−1] such
that A+A ∼ G′+g0N by the definition of g0. Hence there is a G′′ ⊆ [0, d−1]
where d = gcd(g0, g1) such that A + A ∼ G′′ + dN by Corollary 2.1. By the
minimality of g0, d = g0. This ends the proof. 2(Claim 2.9.1)

Claim 2.9.2 g0 = g1.
Proof of Claim 2.9.2: Suppose |πg0 [A]| = k and |πg0 [B]| = k′. By

Lemma 2.3, we have α > k
g0
− 1

2g0
. If k′ 6 k, then α > k′

g0
− 1

2g0
. For

each v ∈ πg0 [B] let Bv = B ∩ π−1
g0

(v). Then d(Bv) > d(B) − k′−1
g0

> 1
2g0

by Lemma 2.4. Hence by Lemma 2.5 there is a G ⊆ [0, g0 − 1] such that
A + B ∼ G + g0N. By the minimality of g1 we have g0 = g1.

So we can assume k < k′. If |πg0 [A + B]| > 2k, then by Lemma 2.7 we
have d(A + B) > 2α, a contradiction.

Hence we can assume |πg0 [A + B]| 6 2k− 1 < k + k′− 1. By Lemma 2.2
the stabilizer S ⊆ Z/g0Z of πg0 [A] + πg0 [B] is non-trivial and

|πg0 [A + B]|| = |πg0 [A] + S|+ |πg0 [B] + S| − |S|.

Let d|g0 and d < g0 be such that S = 〈d〉g0 and let s = |S| = g0/d.
If |πd[A]| 6= |πd[B]|, say |πd[A]| < |πd[B]|, then

|πd[A + B]|
= |πg0 [A + B]|/s = |πg0 [A] + S|/s + |πg0 [B] + S|/s− |S|/s

= |πd[A]|+ |πd[B]| − 1 > 2|πd[A]|.

By Lemma 2.7 we have d(A + B) > 2α, which contradicts the assumption
of the lemma.

So we can assume |πd[A]| = |πd[B]| or equivalently |πg0 [A] + S| =
|πg0 [B] + S|. This implies |πg0 [A + B]| = 2|πg0 [A] + S| − s. On the other
hand, we have |πg0 [A + B]| 6 2k − 1. Hence |πg0 [A] + S| 6 k + s−1

2 . This
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implies that for each u ∈ πg0 [A] we have

|πg0 [A] ∩ (u + S)| > k − (|πg0 [A] + S| − |S|) > −s− 1
2

+ s =
s + 1

2
.

Hence each coset of S is either disjoint from πg0 [A] or contains more than
s/2 elements from πg0 [A]. So πg0 [A+A] is the union of S cosets, i.e., there
exists an F ⊆ [0, d− 1] such that πg0 [F ] + S = πg0 [A + A]. This implies

A + A ∼ G + g0N = π−1
g0

[πg0 [A + A]] = π−1
g0

[πg0 [F ] + S] = F + dN,

which contradicts the minimality of g0. 2(Lemma 2.9)

3. Nonstandard Analysis

In this section, we introduce needed notation, basic lemmas, and princi-
ples in nonstandard analysis. The reader is recommended to consult [6] for
the detailed proofs of the lemmas and principles if they are omitted here.
The reader who is familiar with nonstandard analysis should skip this sec-
tion. The detailed introduction for nonstandard analysis can also be found
in [5, 10] or many other nonstandard analysis books. [5] is written for the
reader who has no prior knowledge in mathematical logic.

Let (R; +, ·,6, 0, 1) be the (standard) real ordered field. We often write
R for this field as well as its base set. Let ℘(R) be the collection of all
subsets of R. We call the structure V = (R ∪ ℘(R);+, ·,6, 0, 1,∈, | · |,F)
the standard model, where ∈ is the membership relation between R and
℘(R), | · | is the cardinality function from the collection Fin(R) of all finite
subsets A of R to N such that |A| is the number of elements in A, and
F is a set of nf -ary functions or partial functions f from Rnf to R. For
example, a sequence of real numbers 〈xn : n ∈ N〉 can be viewed as a partial
function from R to R. We will also write V for the set R ∪ ℘(R). We use
an ultrapower construction to construct a nonstandard model ∗V as the
following. Let U be a nonprincipal ultrafilter on N (see [6] for definition)
and let VN be the set of all sequences 〈xn : n ∈ N〉 in V. Two sequences
〈xn〉 and 〈yn〉 are equivalent (modulo U) if {n ∈ N : xn = yn} ∈ U . For a
sequence 〈xn〉 in V let [〈xn〉] denote the equivalence class containing 〈xn〉.
Let VN/U be the set of all equivalence classes of the sequences in VN. One
can embed V into VN/U by identifying each x ∈ V with ∗x = [〈x〉], the
equivalence class of the constant sequence 〈x〉. We consider R as a subset
of RN/U and denote ∗X, where X ⊆ R, for the version of X in VN/U , i.e.,
∗X = [〈X〉]. A number is called standard if it is in R and a set Y ⊆ ∗R
is called standard if there is an X ⊆ R with Y = ∗X. There is a natural
way to extend relations and functions on V such as +, ·,6,∈, and | · | to
VN/U . The nonstandard model ∗V for the purpose of this paper is the set
VN/U together with the extensions of all relevant relations and functions
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such as +, ·,6,∈, | · |, and each function in F to VN/U .3 The details of the
construction can be found in [6].

In ∗V there are non-zero infinitesimals, which are numbers whose ab-
solute values are less than all standard positive real numbers. There are
many positive integers in ∗N but not in N. All integers in ∗NrN are called
hyperfinite integers that are ∗finite from nonstandard point of view but
greater than every standard integer. We reserve the letters H,K,N for
hyperfinite integers.

For two real numbers x, y ∈ ∗R, x and y are called infinitesimally close,
denoted by x ≈ y, if x − y is an infinitesimal. We write x � y (x � y) if
x < y (x > y) and x 6≈ y. By the least upper bound axiom one can show
that for any real number r ∈ ∗R with α < r < β for some α, β ∈ R there is
a unique standard real number γ such that r ≈ γ. The number γ is called
the standard part of r denoted by st(r) = γ where st is called the standard
part map.

A subset Y of ∗R is called internal if Y = [〈Xn〉] where Xn is a subset of
R for each n. So a standard set is an internal set but an internal set may
not be a standard set. A subset of ∗R, which is not internal, is called an
external set. For example N and R are external sets. An internal set [〈Xn〉]
is called hyperfinite if there exists a sequence of finite sets 〈Xn〉 such that
X = [〈Xn〉], hence |X| = [〈|Xn|〉] is a hyperfinite integer. Any hyperfinite
set [〈Xn〉] has a greatest element [〈max Xn〉] and a least element [〈minXn〉].

By a formula in this paper we mean a first-order formula (see [6] for
definition).

The following lemma [6, Proposition 2] is called the transfer principle.

Lemma 3.1. Let ϕ(α1, . . . , αm, X1, . . . , Xn) be a formula such that

α1, . . . , αm ∈ R and X1, . . . , Xn ⊆ R
are the only constants in ϕ and ϕ contains no free variables. Then

ϕ(α1, . . . , αm, X1, . . . , Xn) is true in V
if and only if

ϕ(α1, . . . , αm,∗X1, . . . ,
∗Xn) is true in ∗V.

The next lemma can be found in [6, Proposition 2]

Lemma 3.2. Let ϕ(x, v1, . . . , vk) be a formula such that v1, . . . , vk ∈ ∗V
and x is the only free variable. Then the set

{r ∈ ∗R : ϕ(r, v1, . . . , vk) is true in ∗V}
is internal.

3We consider that the standard model V contains only R and its power set ℘(R) because we
want to introduce nonstandard model as simple as possible for the reader who does not have
prior knowledge of nonstandard analysis.
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The next lemma [6, Proposition 4] is called countable saturation.

Lemma 3.3. Suppose {X(k) : k ∈ N} is a collection of non-empty internal
subsets of ∗R such that X(1) ⊇ X(2) ⊇ . . . ⊇ X(k) ⊇ . . .. Then there is a
v ∈ ∗R such that v ∈ X(k) for every k ∈ N.

Note that if H is hyperfinite, then there are always hyperfinite integers
in [0,H]r (N∪ (H−N)). To see this let An = [n, H−n]. Then An ⊇ An+1

for every n ∈ N. Hence there exists N , which belongs to An for every
n ∈ N. It is easy to check that we have N + Z ⊆ [0,H].

The next lemma [6, Lemma 1] establishes a nonstandard equivalence of
BD(A) > α.

Lemma 3.4. Given α, for any set A ⊆ N, BD(A) > α iff there is an
infinitesimal ι > 0 and an interval I = [n, n + H] ⊆ ∗N of hyperfinite
length such that

∗A(n, n + H)
H + 1

> α− ι.

Loeb spaces: Given a hyperfinite integer H, Ω = [0,H − 1] is a hyperfinite
set. Let A ⊆ Ω be an internal set. Then |A| is an integer between 0 and
H. Hence |A|/H is a real number in ∗R between 0 and 1. Let Σ0 be the
collection of all internal subsets of Ω and let µ(A) = st(|A|/H) for every
A ∈ Σ0. Then (Ω,Σ0, µ) is a finitely-additive probability space from the
standard point of view. For any subset S of Ω, internal or external, define

µ̄(S) = inf{µ(A) : A ∈ Σ0 and A ⊇ S},
µ(S) = sup{µ(A) : A ∈ Σ0 and A ⊆ S}, and

Σ = {S ⊆ Ω : µ̄(S) = µ(S)}.
It is easy to see that Σ0 ⊆ Σ. For each S ∈ Σ, define µL(S) = µ̄(S) = µ(S).
Then (Ω,Σ, µL) is a standard, countably-additive, atomless, complete prob-
ability space, which is called a hyperfinite Loeb space generated by a nor-
malized uniform counting measure | · |/H. Let’s call it simply a Loeb space
on Ω. Note that the Loeb space construction can be carried out on any
hyperfinite set. Note also that the verification of the countable-additivity
requires using countable saturation.

The following notation is non-traditional and will be frequently used in
the proof of the main theorems of the paper.

Let A ⊆ ∗Z and x ∈ ∗Z. Define

Ax+N = x + (A− x) ∩ N,

Ax−N = x− (x−A) ∩ N,

Ax+Z = x + (A− x) ∩ Z,
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dx+N(A) = d((A− x) ∩ N), and

dx−N(A) = d((x−A) ∩ N).

In words, Ax+N is the part of A in x + N where x + N is a copy of N
lying upward from x. Likewise, Ax−N is the part of A in x− N and Ax+Z
is the part of A in x + Z.

The following lemma is a variation of [6, Lemma 2]. Although the style
of the lemma is slightly different from [6, Lemma 2], the ideas of the proofs
are similar.

Lemma 3.5. Suppose A ⊆ N, BD(A) = α, and {[an, bn] : n ∈ N} is a se-
quence of intervals of standard integers satisfying (I). Let N be any hyperfi-
nite integer. Then for almost all x ∈ [aN , bN ] in terms of the Loeb measure
µL on [aN , bN ], we have dx+N(∗A) = dx−N(∗A) = α. On the other hand,
if A ⊆ N and there is an x ∈ ∗N such that dx+N(∗A) > α or dx−N(∗A) > α,
then BD(A) > α.

Proof Suppose BD(A) = α and {[an, bn] : n ∈ N} is the sequence satis-
fying (I). By Lemma 3.1

∗A(aN , bN )
bN − aN + 1

≈ α.

Hence the Loeb measure of the set ∗A[aN , bN ] in [aN , bN ] is α. Let T be the
map from [aN , bN ] to [aN , bN ] such that T (bN ) = aN and T (x) = x + 1 for
every x ∈ [aN , bN − 1]. Let T ′ be the map from [aN , bN ] to [aN , bN ] such
that T ′(aN ) = bN and T ′(x) = x−1 for every x ∈ [aN +1, bN ]. Then T and
T ′ are Loeb measure-preserving transformation. Let f be the characteristic
function of the set ∗A[aN , bN ]. By Lemma 2.1 there is an L1 function f̄ such
that for almost all x ∈ [aN , bN ],

(III) lim
n→∞

1
n

n−1∑
m=0

f(Tm(x)) = f̄(x).

Since the integration over [aN , bN ] of the left-hand side of (III) is α, then∫
[aN ,bN ] f̄dµL = α. We need to show that f̄(x) = α almost surely. Note

that the set ∩∞n=0[aN , bN − n] has Loeb measure 1.
Suppose there is an x ∈ ∩∞n=0[aN , bN − n] such that the left-hand side of

(III) is β > α. Then
∗A(x,x+n)

n+1 > β+α
2 for sufficiently large n ∈ N. Let D be

the set of all n ∈ ∗N such that
∗A(x,x+n)

n+1 > β+α
2 . By Lemma 3.2, D is an

internal subset of ∗N, which contains all sufficiently large n in N. Then D

must contain a hyperfinite integer N ′. Hence
∗A(x,x+N ′)

N ′+1 > β+α
2 . By Lemma

3.4, BD(A) > β+α
2 > α. This contradicts BD(A) = α.
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Since f̄(x) 6 α for almost all x ∈ [aN , bN ] and
∫
[aN ,bN ] f̄(x)dµL = α,

then f̄ = α almost surely. Since

lim
n→∞

1
n

n−1∑
m=0

f(x + m) = α

implies dx+N(∗A) = α, then for almost all x ∈ [aN , bN ], we have dx+N(∗A) =
α.

If T is replaced by T ′ in the arguments above, then dx−N(∗A) = α
for almost all x ∈ [aN , bN ]. Hence for almost all x ∈ [aN , bN ] we have
dx+N(∗A) = dx−N(∗A) = α.

Suppose dx+N(∗A) > α (dx−N(∗A) > α). Then there is a hyperfinite
integer N such that

∗A(x,x+N)
N+1 ≈ α or > α (

∗A(x−N,x)
N+1 ≈ α or > α). By

Lemma 3.4 we have BD(A) > α. 2(Lemma 3.5)

4. Proof of theorem 1.1

In this section we state Theorem 4.1, which can be viewed as a non-
standard version of Theorem 1.1. We first prove Theorem 1.1 assuming
Theorem 4.1 and then prove Theorem 4.1.

Theorem 4.1. Let B be an internal subset of an interval [0,H] of hyper-
finite length. Suppose

(a) for any x ∈ [0,H], dx+N(B) 6 α and dx−N(B) 6 α,
(b) there is an S ⊆ [0,H] with Loeb measure one such that for any x ∈ S,

dx+N(B) = dx−N(B) = α,
(c) for any x ∈ [0, 2H], dx+N(B + B) < 2α and dx−N(B + B) < 2α.

Then there is a g ∈ N such that for any x ∈ S, g = gC,C as defined in (II)
where C = (B−x)∩N, and there are G ⊆ [0, g− 1] and [c, d] ⊆ [0,H] such
that

(1) d−c
H+1 ≈ 1,

(2) B + B ⊆ G + g ∗N,
(3) (B + B) ∩ [2c, 2d] = (G + g ∗N) ∩ [2c, 2d],
(4) |G|

g > 2α− 1
g .

Proof of Theorem 1.1 assuming Theorem 4.1: Let A ⊆ N be such
that BD(A) = α and BD(A+A) < 2α. Let {[an, bn] : n ∈ N} be a sequence
of intervals satisfying (I). Let N be an arbitrary hyperfinite integer. There
is a subset S ⊆ [aN , bN ] of Loeb measure one (on [aN , bN ]) such that for
any x ∈ S we have dx+N(∗A) = dx−N(∗A) = α by Lemma 3.5. For any
x ∈ [aN , bN ] we have dx+N(∗A) 6 α and dx−N(∗A) 6 α, and for any x ∈
[2aN , 2bN ] we have dx+N(∗A + ∗A) < 2α and dx−N(∗A + ∗A) < 2α, again
by Lemma 3.5. Applying Theorem 4.1 with [0,H] = [aN , bN ] − aN and
B = ∗A[aN , bN ]− aN we can find gN , GN , [cN , dN ] such that
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(1) dN−cN
bN−aN

≈ 1,
(2) ∗A[aN , bN ] + ∗A[aN , bN ] ⊆ GN + gN

∗N,
(3) (∗A[aN , bN ] + ∗A[aN , bN ]) ∩ [2cN , 2dN ] = (GN + gN

∗N) ∩ [2cN , 2dN ],
(4) |GN |

gN
> 2α− 1

gN
.

We show first that gN and |GN | do not depend on N and then show that
GN does not depend on N .

Let N ′ be another hyperfinite integer. Let x ∈ [aN , bN ] and y ∈ [aN ′ , bN ′ ]
be such that dx+N(∗A[aN , bN ]) = dy+N(∗A[aN ′ , bN ′ ]) = α. Then

dx+y+N(∗Ax+N + ∗Ay+N) 6 dx+y+N(∗A + ∗A) < 2α

by Lemma 3.5. Let g′ = gC,D be as defined in (II) where

(C,D) = ((∗A− x) ∩ N, (∗A− y) ∩ N).

Then by Lemma 2.9 we have gN = g′ = gN ′ . Clearly m = |GN | = d2αg−1e
depends only on α and g.

We now show that GN does not depend on N . Given a hyperfinite integer
N , let FN ⊆ [0, g − 1] be minimal such that ∗A[aN , bN ] ⊆ FN + g ∗N. Note
that FN +FN = G in Z/gZ. By Lemma 2.2 and the minimality of g = gC,C

as defined in Theorem 4.1 we have |FN | = m+1
g .

Claim 1.1.1 ∗A ⊆ FN + g ∗N.
Proof of Claim 1.1.1: Suppose not and let z ∈ ∗A r (FN + g ∗N). By
Lemma 3.1 we can assume z ∈ A r (FN + gN). Choose another hyperfinite
integer N ′ such that bN ′ − aN ′ > 2bN . Such N ′ exists by Lemma 3.1. Let
x ∈ [aN , bN ] be such that x + N ⊆ [aN , bN ] and dx+N(∗A) = α. Note that
∗Ax+N ⊆ FN + g ∗N. Since (z + bN ′)− (x + aN ′) > bN′−aN′

2 , then by Lemma
3.5 one can find y1, y2 ∈ [aN ′ , bN ′ ] such that dy1+N(∗A) = dy2+N(∗A) = α
and x + y1 = z + y2 = u. Since du+N(∗Ax+N + ∗Ay1+N) < 2α, then there is
a G′ ⊆ [0, g− 1] such that ∗Ax+N + ∗Ay1+N ∼ x + y1 + G′ + gN. Let F, F ′ ⊆
[0, g − 1] be minimal such that ∗Ax+N ⊆ F + g ∗N and ∗Ay1+N ⊆ F ′ + g ∗N.
By Lemma 2.3 we have |F | = |F ′| = m+1

g . Hence F = FN . Since ∗Ay1+Z ⊆
∗A[aN ′ , bN ′ ] ⊆ FN ′ + g ∗N, then F ′ = FN ′ . Since ∗Ay2+N ⊆ FN ′ + g ∗N, then
∗Ay2+N ⊆ F ′ + g ∗N. Note that z 6∈ F + g ∗N. Hence there is a v ∈ ∗Ay2+N
such that z + v 6∈ F + F ′ + g ∗N by Lemma 2.3. Now we have

z + ∗Ay2+N ⊆ x + y1 + N and z + ∗Ay2+N ∩ (v + g ∗N) 6⊆ ∗Ax+N + ∗Ay1+N.

Since

dx+y1+N(∗A + ∗A) >

dx+y1+N(∗Ax+N + ∗Ay1+N) + dz+y2+N(z + (∗Ay2+N ∩ (v + g ∗N))),

then by Lemma 2.6 we have dx+y1+N(∗A + ∗A) > 2α, which implies
BD(A+A) > 2α by 3.5, a contradiction to the assumption BD(A+A) < 2α.

2(Claim 1.1.1)
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By Claim 1.1.1 we conclude that ∗A ⊆ FN + g ∗N for any hyperfinite
integer N . Hence there is an F ⊆ [0, g − 1] such that FN = F for any
hyperfinite integer N by the minimality of FN . Let G ⊆ [0, g − 1] be such
that πg[F + F ] = πg[G]. Then GN = G for any hyperfinite integer N and
m = |G| = d2αg−1e. Clearly ∗A+ ∗A ⊆ G+g ∗N and hence A+A ⊆ G+gN.

Note that I = {[an, bn] : n ∈ ∗N} is an internal sequence of intervals4.
Given k ∈ N let ϕk(x, g,G, ∗A, I) be the formula saying that x is a positive
integer and there is a [cx, dx] ⊆ [ax, bx] with dx−cx

bx−ax
> 1− 1

k such that

(∗A + ∗A) ∩ [2cx, 2dx] = (G + g ∗N) ∩ [2cx, 2dx].

We will omit the parameters of the formula ϕk and simply write ϕk(x)
instead. Let Xk be the set of all positive integers x ∈ ∗N such that ϕk(x) is
true in ∗V. Then Xk is internal by Lemma 3.2 and contains all hyperfinite
integers. Let

nk = min{x ∈ ∗N : ∗N r [0, x− 1] ⊆ Xk}.

Then nk ∈ N. One can now choose a strictly increasing sequence n′k > nk

in N. For each n ∈ [n′k, n
′
k+1−1] for k > 0 choose [cn, dn] guaranteed by the

truth of ϕk(n) in ∗V. For n < n′1 choose [cn, dn] = ∅. Then limn→∞
dn−cn
bn−an

=
1.

Finally

m

g
= BD(G + gN) > BD(A + A) > lim

n→∞

|(A + A) ∩ [2cn, 2dn]|
2dn − 2cn + 1

=
m

g

implies BD(A + A) = m
g > 2α− 1

g . 2(Theorem 1.1)

Proof of Theorem 4.1: Without loss of generality let

S = {x ∈ [0,H] : dx+N(B) = dx−N(B) = α}.

Given x, y ∈ S, let gx,y = gC,D be as defined in (II) where

(C,D) = ((B − x) ∩ N, (B − y) ∩ N)

and let hx,y = gC,D where

(C,D) = ((x−B) ∩ N, (y −B) ∩ N).

Note that for any k ∈ Z, x ∈ S iff x + k ∈ S. We also have gx,y = gx+k,y =
gx,y+k and hx,y = hx+k,y = hx,y+k. For any C,D ⊆ x + N we write C ∼ D
if C −x ∼ D−x. For any C,D ⊆ x−N we write C ∼ D if x−C ∼ x−D.

Claim 4.1.1 For any x, y ∈ S, gx,x = gx,y and hx,x = hx,y.
Proof of Claim 4.1.1: The claim follows from Lemma 2.9. 2(Claim 4.1.1)

4I can be viewed as a pair of sequences in F as we define the nonstandard universe.
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By Claim 4.1.1 we can fix g and h such that g = gx,y and h = hx,y for
any x, y ∈ S.

Claim 4.1.2 g = h.
Proof of Claim 4.1.2: Assume the claim is not true. By symmetry we can
assume h < g. Let x ∈ S and let G ⊆ [0, h− 1] with |G| = m be such that

Bx−N + Bx−N ∼ 2x + G− hN.

Let F ⊆ [0, h− 1] with |F | = k be minimal such that Bx−N ⊆ x + F − hN.
Then m = 2k − 1. Note that α > k

h −
1
2h .

Since dx−N(B) = α, then there is a hyperfinite integer N such that
B(x−N,x)

N+1 ≈ α and B[x −N,x] ⊆ x + F − h ∗N by Lemma 3.1 and Lemma
3.2. By the proof of Lemma 3.5 there is a y ∈ [x − N,x] such that
y + Z ⊆ [x − N,x] and dy+N(B) = dy−N(B) = α. So y ∈ S. Since
By+N ⊆ x+F −h ∗N, then for any z ∈ By+N and Bz = By+N∩(z+h ∗Z), we
have dy+N(Bz) > 1

2h by Lemma 2.4. This implies that there is G′ ⊆ [0, h−1]
such that By+N +By+N ∼ G′ +hN. Hence g = gy,y 6 h by Claim 4.1.1 and
by the definition of g. This contradicts the assumption that h < g.

2(Claim 4.1.2)

Claim 4.1.3 For any x, y ∈ S, there is G ⊆ [0, g − 1] such that |G| =
d2αg − 1e and

Bx+Z + By+Z = (x + y) + G + gZ.

Proof of Claim 4.1.3: Let G, G′ ⊆ [0, g − 1] be such that

Bx+N + By+N ⊆ (x + y) + G + gN,

Bx+N + By+N ∼ (x + y) + G + gN,

Bx−N + By−N ⊆ (x + y) + G′ − gN, and

Bx−N + By−N ∼ (x + y) + G′ − gN.

Note that |G| = |G′| = d2αg − 1e.
Suppose G 6= G′. There are b ∈ Bx−N and c ∈ By−N such that

b + c 6∈ (x + y) + G + gZ.

Clearly b, c ∈ S. Let G′′ ⊆ [0, g − 1] be such that

Bb+N + Bc+N ∼ (b + c) + G′′ + gN.

Then |G′′| > m + 1, which contradicts that |G′′| = d2αg − 1e. This shows
G = G′.

Suppose
Bx+Z + By+Z 6= (x + y) + G + gZ

and let
u ∈ ((x + y) + G + gZ) r (Bx+Z + By+Z).
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Let b ∈ Bx+Z and c ∈ By+Z be such that b + c ≡ u ( mod g). Let n ∈ Z
be such that b + c + ng = u. Let B−

b = Bb−N ∩ (b + gZ) and B+
c+ng =

Bc+ng+N ∩ (c + ng + gZ). Then

db−N(B−
b ) >

1
2g

and dc+ng+N(B+
c+ng) >

1
2g

.

Hence we have B+
c+ng ∩ (b + c + ng −B−

b ) 6= ∅. This implies

u = b + c + ng ∈ B−
b + B+

c+ng ⊆ Bx+Z + By+Z,

which contradicts the choice of u. 2(Claim 4.1.3)

Claim 4.1.4 Let x ∈ S be such that 0 � x
H � 1 and let G ⊆ [0, g − 1]

be such that
Bx+Z + Bx+Z = (G + g ∗N) ∩ (2x + Z).

Then there is [c, d] ⊆ [0,H] with c
H ≈ 0 and d

H ≈ 1 such that

(G + g ∗N) ∩ [2c, 2d] ⊆ (B + B) ∩ [2c, 2d].

Proof of Claim 4.1.4: Let c and d be defined by

c = min{y ∈ [0, x] : (G + g ∗N) ∩ [2y, 2x] ⊆ (B + B) ∩ [2y, 2x]}
d = max{y ∈ [x,H] : (G + g ∗N) ∩ [2x, 2y] ⊆ (B + B) ∩ [2x, 2y]}.

The number c and d are well defined by Claim 4.1.3. It suffices to show
that c

H ≈ 0 and d
H ≈ 1. We show d

H ≈ 1 first. The statement c
H ≈ 0 then

follows from symmetry.
Suppose d

H � 1. Then either 2d + 1 or 2d + 2 belongs to the set
(G + g ∗N) r (B + B). Suppose

2d + 1 ∈ (G + g ∗N) r (B + B).

Let u = min{H − d, d}. Then u
H � 0 and [d− u + 1, d + u] ⊆ [0,H]. Let

S′ = S ∩ [d− u + 1, d + u].

Then 2d + 1− S′ ⊆ [d− u + 1, d + u]. Since S has Loeb measure one, then
S′ ∩ (2d + 1 − S′) 6= ∅, which implies that there are y, z ∈ S′ such that
2d + 1 = y + z. Let G′ ⊆ [0, g − 1] be such that

By+Z + Bz+Z = (G′ + g ∗N) ∩ (y + z + Z).

Then we have |G| = |G′| by Claim 4.1.3. Note that dx+y−1−N(B +B) < 2α
and

(G + g ∗N) ∩ (y + z − 1− N) ⊆ B + B

by the maximality of d. Hence G ⊆ G′, which implies G = G′ because they
have the same cardinality . So we have

2d + 1 ∈ (G + g ∗N) ∩ (2d + 1 + Z)
= (G′ + g ∗N) ∩ (x + y + Z) = By+Z + Bz+Z ⊆ (B + B).
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This contradicts the assumption that 2d + 1 6∈ (B + B). If 2d + 1 ∈ B + B
and

2d + 2 ∈ (G + g ∗N) r (B + B),
then one needs only to replace [d − u + 1, d + u] by [d − u, d + u] in the
arguments above. 2(Claim 4.1.4)

By Claim 4.1.4 we can now fix G ⊆ [0, g − 1] and [c, d] such that the
conclusions of Claim 4.1.4 are true. Let x ∈ S be such that x + Z ⊆ [c, d].
Note that (∗A+ ∗A)∩ (2x+Z) = (G+g ∗N)∩ (2x+Z). Let F ⊆ [0, g−1] be
minimal such that B[c, d] ⊆ F +g ∗N. Note that F +F = G in Z/gZ. Since
g = gx,x, then by Lemma 2.2 and minimality of gx,x it is impossible to have
2|F |− 1 > |G| because otherwise G would have a non-trivial stabilizer S in
Z/gZ, which contradicts the minimality of gx,x. On the other hand, since
∗Ax+Z ⊆ F + g ∗N, then by Lemma 2.3 we have 2|F | − 1 = |G|.
Claim 4.1.5 B + B ⊆ G + g ∗N.
Proof of Claim 4.1.5: Suppose the claim is not true and let

a ∈ (B + B) r (G + g ∗N).

Then there are u, v ∈ B such that u + v = a. Without loss of generality we
can assume u 6∈ F + g ∗N. By Lemma 2.3 we have u + F + g ∗N 6⊆ G + g ∗N.
Choose z ∈ S such that u + z + Z ⊆ [2c, 2d]. Without loss of generality we
can assume that z ∈ Bz+Z and u + z 6∈ G + g ∗N because otherwise z can
be replaced by z + n for some n ∈ Z. Note that z + n is also in S. Let
B+

z = B ∩ (z + gN). Then (u + B+
z ) ∩ (G + g ∗N) = ∅. Since

(u + B+
z ) ∪ ((G + g ∗N) ∩ (u + z + Z)) ⊆ (B + B) ∩ (u + z + Z),

then
du+z+N(B + B) >

m

g
+ dz+N(B+

z ) > 2α

by Lemma 2.6, which contradicts (c) of Theorem 4.1. 2(Claim 4.1.5)

Clearly, the conclusion (3) of the theorem follows from Claim 4.1.4 and
Claim 4.1.5. 2(Theorem 4.1)

5. Comments and questions

In Theorem 1.1 we can replace A + A by A + B as long as BD(A) =
BD(B) = α, BD(A + B) < 2α, and the sequence of intervals {[an.bn] : n ∈
N} satisfies

lim
n→∞

(bn − an) = ∞ and lim
n→∞

A(an, bn)
bn − an + 1

= lim
n→∞

B(an, bn)
bn − an + 1

= α.

However, the change will make the theorem more tedious and less natural.
Without the last condition above, the problem becomes complicated. The
following is a general question about the sum of multiple sets.
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Question 5.1. Let Ai ⊆ N for i = 1, 2, . . . , k and

BD(
k∑

i=1

Ai) <

k∑
i=1

BD(Ai).

Let {[a(i)
n , b

(i)
n ] : n ∈ N} be such that

lim
n→∞

(b(i)
n − a(i)

n ) = ∞ and lim
n→∞

Ai(a
(i)
n , b

(i)
n )

b
(i)
n − a

(i)
n + 1

= BD(Ai)

for i = 1, 2, . . . , k. How well can we characterize the structure of
∑k

i=1 Ai

in
∞⋃

n=1

[
k∑

i=1

a(i)
n ,

k∑
i=1

b(i)
n ]?

The following question for finite Abelian groups and the results of the
paper seem to have some similar flavor.

Question 5.2. Let G = Z/gZ. Let F0, F1 ⊆ G be such that |F0| = |F1| = k,
|F0 + F0| = 2k − 1, and |F0 + F1| = 2k − 1. Can we conclude that there is
an h ∈ G such that F1 = h + F0?

Inverse problems for the addition of two sets A+A concern the structure
of A when the size of A+A is relatively small. G. A. Freiman proved a series
of important theorems on the inverse problems for a finite set A (cf.[2, 11]).

For an infinite set A ⊆ N, we use densities to measure the size of A.
Lemma 2.3 can be viewed as a theorem for the inverse problems for infinite
sets, which says roughly that if d(A+A) < 2d(A) (i.e., the lower asymptotic
density of A + A is small), then A ⊆ F + gN and d(A) > |F |

g − 1
2g (i.e.,

A is a large subset of the union of arithmetic sequences with a common
difference g). In [8, 9] a theorem is proven for the inverse problem about
upper asymptotic density. We can also state a corollary of Theorem 1.1 as
a result for the inverse problem about the upper Banach density.

Corollary 5.1. Let A be a set of non-negative integers such that BD(A) =
α and BD(A + A) < 2α. Then there are g ∈ N and F ⊆ [0, g− 1] such that
A ⊆ F + gN and |F |

g − 1
2g < α 6 |F |

g .

There is a generalization of Theorem 1.2 for A + A by Y. Bilu [1]. It
is interesting to see whether we can also derive a theorem on the inverse
problems about the upper Banach density parallel to Bilu’s result. In [1] a
condition lac(A) < Λ is imposed on A. Note that in the first part of Lemma
3.5 we actually have dx+N(∗A) = dx−N(∗A) = d̄x+N(∗A) = d̄x−N(∗A). Since
d(A) = d̄(A) implies lac(A) = 1, then the condition lac((∗A− x) ∩ N) 6 Λ
is automatically satisfied when we apply some existing theorems about the
lower asymptotic density to the set ∗Ax+N in Lemma 3.5.
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Question 5.3. Suppose BD(A + A) 6 cBD(A) for some c > 2. What
should be the structure of A?
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