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Abstract

A general method is developed by using nonstandard analysis for formulating

and proving a theorem about upper Banach density parallel to each theorem

about Shnirel'man density or lower asymptotic density.

There are many interesting results about Shnirel'man density or lower asymptotic

density (see [4, Chapter 1] for example) in additive number theory. There are also a

few interesting results about upper Banach density (see [3] or [2]) in combinatorial

number theory. However, dealing with upper asymptotic density or upper Banach

density in additive number theory is still an uncharted area. One of the major un-

touched problem in this area is �nding the growth and structure of sums of sets of

zero lower asymptotic density but positive upper density or upper Banach density.

In this paper, we show a general method how, using nonstandard analysis, one can

easily derive a parallel result about upper Banach density whenever one has a result

about Shnirel'man density or lower asymptotic density in additive number theory.

Serving as the testing cases of the idea, four parallel theorems about upper Banach

density are formulated and proven in this paper. In x1, these four parallel theorems

are stated. In x2, a brief introduction of nonstandard analysis is given. The intro-

duction is intended for the reader without knowledge of nonstandard analysis. The

reader who knows nonstandard analysis should ignore this section. In x3, all four

theorems stated in x1 are proven using nonstandard analysis developed in x2. In x4,

some comments are made.
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1 Results

Some notations are needed before I can state the theorems. We denote by N, Z

and R the set of all natural numbers, the set of all integers and the set of all real

numbers, respectively. Let N+ denote the set of all positive integers. The letters

A;B;C; : : : are always used for subsets of Z and the letters k;m; n; : : : are always used

for (standard) integers. The Greek letters �; �; �; : : : are always used for (standard)

real numbers. For any integers a; b with a 6 b, we denote exclusively by [a; b] the

interval of integers fc : c is an integer and a 6 c 6 bg. When a > b, let [a; b] be the

empty set. For any A;B � Z, n 2 Z and h 2 N+, let A � n = fa � n : a 2 Ag,

A� B = fa� b : a 2 A and b 2 Bg and

hA = fa1 + a2 + � � �+ ah : a1; a2; : : : ; ah 2 Ag:

For any integers a; b and any set A, let A(a) = jA \ [1; a]j and A(a; b) = jA \ [a; b]j

where j � j means the cardinality. A set B � N is called a basis if there exists an

h 2 N+, which is called the order of the basis B, such that hB = N. A set B � N is

called an asymptotic basis if there exists an h 2 N+, which is called the asymptotic

order of B, such that N r hB is a �nite set. For a set A, the Shnirel'man density

�(A), the lower asymptotic density d(A) and the upper Banach density BD(A) are

de�ned as the following:

�(A) = inf
n>1

A(n)

n

d(A) = lim inf
n!1

A(n)

n

BD(A) = lim
n!1

sup
06k6m;m�k=n

A(k;m)

m� k + 1
:

Although the set A may contain negative integers, the three de�nitions above involve

only the non-negative part of A. A set A is called thick if BD(A) = 1. A set B � N

is called a Banach basis if there exists an h 2 N+, which is called the Banach order of

B, such that hB is thick. Note that a set is thick i� it contains k consecutive natural

numbers for any k 2 N.

Now we are ready to state four results about the upper Banach density. The �rst

result is a theorem parallel to Shnirel'man's theorem [4, page 8] or [12, page 195].

Shnirel'man's theorem says that for any set A � N, if �(A) > 0 and 0 2 A, then
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A is a basis. Shnirel'man's theorem can also be stated in terms of lower asymptotic

density: if d(A) > 0 and 0; 1 2 A, then A is a basis. Our parallel theorem is the

following.

Theorem 1 Let A � N and let a0 be the least element in A. If BD(A) > 0 and the

greatest common divisor of all positive integers in A � a0 is 1, then A is a Banach

basis.

Note that if A is a Banach basis, then the greatest common divisor of all positive

integers in A� a0 must be 1. The reason is the following. If the common divisor of

all positive numbers in A � a0 is c > 1, then hA is a subset of fha0 + nc : n 2 Ng

which can never be thick.

The second result is a theorem parallel to Mann's theorem [4, page 5]. Mann's

theorem says that for any sets A;B � N, if 0 2 A \ B, then

�(A+B) > minf�(A) + �(B); 1g:

Using Mann's theorem one can give a quantitative proof of Shnirel'man's theorem: if

�(A) > 0 and 0 2 A, then A is a basis of order at most d 1
�(A)

e, where d�e is the least

integer greater than or equal to �. The following is the parallel theorem.

Theorem 2 Let A;B � N. Then

BD(A+B + f0; 1g) > minfBD(A) +BD(B); 1g:

Note that the term f0; 1g can be replaced by fc; c + 1g for any c 2 N because

BD(C) = BD(C + c) for any C � N. Note also that f0; 1g can't be omitted because,

for example, that all even numbers plus all even numbers are all even numbers. Using

Theorem 2, one can also give a quantitative proof of a variation of Theorem 1: if

BD(A) > 0 and A contains two consecutive numbers, then A is a Banach basis of

order at most 2d 1
BD(A)

e � 1. This result is also optimal. Let c be an integer greater

than 1 and let A = f2nc : n 2 Ng [ f2nc + 1 : n 2 Ng. Then BD(A) = 1
c
. Hence,

A is a Banach basis of order 2d 1
BD(A)

e � 1 = 2c� 1. But the set (2c� 2)A is disjoint

from the set f2nc� 1 : n 2 Ng. Hence, A is not a Banach basis of order 2c� 2.

The third result is a theorem parallel to Pl�unnecke's theorem [13, page 225] about

essential components. A set B � N is called an essential component if for any A � N
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with 0 < �(A) < 1, one has �(A+B) > �(A). Pl�unnecke's theorem says that if B is

a basis of order h > 2, then for every A � N, �(A + B) > �(A)1�
1

h . As a corollary,

any basis of �nite order is an essential component. Let's call a set B � N a piecewise

basis of order hp 2 N+ if there exists a sequence of intervals h[an; bn] : n 2 Ni such

that limn!1(bn � an) = 1 and [an; bn] � hp((B � an) \N) + an for every n 2 N.

It is easy to see that a basis of order h is a piecewise basis of order h. Our parallel

theorem is the following.

Theorem 3 Suppose B is a piecewise basis of order hp. Then for any A � N,

BD(A+B) > BD(A)
1� 1

hp :

The fourth result is a parallel theorem to Erd�os-Landau's theorem [4, page 10]

and to Rohrbach's theorem [4, page 45]. Let B be a basis of order h. For any m 2 N

let h(m) = minfh0 : m 2 h0Bg. Clearly, h(m) 6 h. The number h� is called the

average order of B where

h� = sup
n>1

1

n

nX

m=1

h(m):

Clearly, h� 6 h. Let B be an asymptotic basis of order ha such thatNrhaB � [0; b0].

The number h�a is called the average asymptotic order of B where

h�a = lim sup
n!1

1

n

nX

m=b0+1

h(m):

Also clearly, h�a 6 ha. Erd�os-Landau's theorem says that if B is a basis of average

order h�, then for any A � N,

�(A+B) > �(A) +
1

2h�
�(A)(1� �(A)):

(Erd�os-Landau's theorem is a direct consequence of Pl�unnecke's theorem. See the

comments in [4, page 12] and [13, Corollary 7.2, page 226].) Rohrbach's theorem

is an asymptotic analogue of Erd�os-Landau's theorem, which says that if B is an

asymptotic basis of average asymptotic order h�a, then for any A � N,

d(A+B) > d(A) +
1

2h�a
d(A)(1� d(A)):

Before stating the parallel theorem, we need the de�nition of a piecewise asymptotic

basis which is the \Banach" version of an asymptotic basis. A set B � N is called a
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piecewise asymptotic basis of piecewise asymptotic order hpa if there exists a sequence

of intervals h[an; bn] : n 2 Ni and there exists a number k 2 N such that limn!1(bn�

an) =1 and

[an + k; bn] � hpa((B � an) \N) + an

for every n 2 N. Note that a piecewise basis is a piecewise asymptotic basis. One

needs only to take k = 0. Also a piecewise asymptotic basis is a Banach basis. One

can easily construct a Banach basis which is not a piecewise asymptotic basis and

construct an piecewise asymptotic basis which is not a piecewise basis. In Theorem 1,

one can't replace the conclusion \A is a Banach basis" by \A is a piecewise asymptotic

basis". Let B be a piecewise asymptotic basis. Suppose I = h[an; bn] : n 2 Ni,

k 2 N and hpa 2 N+ are given such that limn!1(bn � an) = 1 and [an + k; bn] �

hpa((B � an) \N) + an for every n 2 N. For each n 2 N and each m 2 [an + k; bn],

let

hn(m) = minfh0 2 N+ : [an + k; bn] � h0((B � an) \N) + ang:

Let

h�n = sup
an+k6m6bn

1

m� an � k + 1

mX

i=an+k

hn(i):

and let

h�
I;k = lim sup

n!1

h�n:

Now the piecewise asymptotic average order h�pa of a piecewise asymptotic basis is

de�ned as

h�pa = inffh�
I;k : for all suitable I and kg:

Now we are ready to state the theorem.

Theorem 4 If B � N is a piecewise asymptotic basis of piecewise asymptotic average

order h�pa, then for every A � N,

BD(A+B) > BD(A) +
1

2h�pa
BD(A)(1� BD(A)):

Note that the piecewise asymptotic basis in above theorem can't be replaced by

a Banach basis. A straightforward construction can produce a set A with BD(A) =
1
2
and a Banach basis B of order 2 such that BD(A + B) = 1

2
. Note also that,

mentioned in [4, page 12-13], Erd�os and others have proven some results �ner than

5



Erd�os-Landau's theorem. The reader should be able to derive some parallel results

about upper Banach density �ner than Theorem 4 using the same ideas developed in

x2 and x3.

2 Nonstandard Analysis

In this section, we briey introduce the nonstandard analysis. Although the purpose

of this introduction is only supplying enough background for this paper, the intro-

duction itself may give the reader some ideas how the nonstandard analysis works in

general. The detailed introduction can be found in [11] or [5]. [5] is written for the

reader who has no background in mathematical logic.

Let (R; +; �;6; 0; 1) be the (standard) real ordered �eld. We often write R for this

�eld as well as its base set. Let }(R) be the collection of all subsets of R. We call

the structure V = (R [ }(R); +; �;6; 0; 1;2; j � j) the standard model, where 2 is the

membership relation between R and }(R) and j � j is the cardinality function from

the collection Fin(R) of all �nite subsets of R to N such that jAj is the number of

elements in A. We will also write V for the set R[}(R). Next we use an ultrapower

construction to construct a nonstandard model �V which is an extension of V and

much more.

Ultra�lter on N: A collection U of some subsets of N is called a �lter if

(i) ; 62 U ,

(ii) A 2 U and A � B imply B 2 U ,

(iii) A 2 U and B 2 U imply A \ B 2 U .

A �lter U on N is called an ultra�lter if

(iv) for every A � N, either A 2 U or Nr A 2 U .

An ultra�lter U is called nonprincipal if

(v) Nr [0; n] 2 U for every n 2 N.

Ultra�lter Theorem [6, page 55] Assuming the axiom of choice, there exists a

nonprincipal ultra�lter on N.

From now on, let's �x a nonprincipal ultra�lter U on N.

Ultrapower construction: Let VN = fhvn : n 2 Ni : vn 2 Vg be the set of all V-

sequences. Using the ultra�lter U , one can de�ne an equivalence relation �U on VN

by letting hun : n 2 Ni �U hvn : n 2 Ni i� fn 2 N : un = vng 2 U . We denote
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by [hvn : n 2 Ni] the equivalence class containing hvn : n 2 Ni. Let �V = VN=U

be the set of all equivalence classes. For each v 2 V, let �v 2 �V be the equivalence

class containing the constant sequence hv : n 2 Ni. Then the map � : v 7! �v is an

embedding which embeds V into �V. Hence one can view V as a subset of �V. As a

convention, we simply write r for �r when r 2 R. We can also extend +; �;6;2 and

j � j onto �V as the following.

For any [hun : n 2 Ni] and [hvn : n 2 Ni] in �R and any [hAn : n 2 Ni] in �}(R),

let

[hun : n 2 Ni] + [hvn : n 2 Ni] = [hun + vn : n 2 Ni]

[hvn : n 2 Ni] � [hun : n 2 Ni] = [hun � vn : n 2 Ni]

[hun : n 2 Ni] 6 [hvn : n 2 Ni] i� fn 2 N : un 6 vng 2 U

[hun : n 2 Ni] 2 [hAn : n 2 Ni] i� fn 2 N : un 2 Ang 2 U

and

j[hAn : n 2 Ni]j = [hjAnj : n 2 Ni]:

Note that if every An is a �nite set, then [hAn : n 2 Ni] 2 �Fin(R) and j[hAn :

n 2 Ni]j 2 �N. The structure (�V; +; �;6; 0; 1;2; j � j) is called a nonstandard model.

We also use �V for the nonstandard model. Obviously, �V is an extension of V.

In fact, �R is a (nonstandard) real ordered �eld, �Z is a (nonstandard) integer ring,
�N is a (nonstandard) model of Peano arithmetic, etc. In �R there are numbers

closer to 0 than any standard non-zero real numbers in R. These numbers are called

in�nitesimals. For example, [h 1
n
: n 2 Ni] is a non-zero in�nitesimal. There are

also integers in �N which are greater than any standard integers in N. We call

those numbers hyper�nite integers. For example, the number [hn : n 2 Ni] is a

hyper�nite integer. The reader is recommanded to visualize a hyper�nite integer not

as a sequence, but as a single number extremely far away. We write H;K;L; : : : as

well as a; b; c : : : for both �nite or hyper�nite integers. We call all elements in �R the

numbers in �V and call elements in �}(R) the sets in �V. There are three kinds of

subsets of �R. All the subsets having the form �A for some A � R are called standard

sets. All the subsets having the form [hAn : n 2 Ni] with An � R are called internal

sets. A subset of �R is called an external set if it is not internal. For example, the

set N is an external subset of �R. In fact, every internal subset of �N bounded above

has a largest element. Let A = [hAn : n 2 Ni] � [0; H] for some hyper�nite integer
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H. Then maxA, the largest element in A, is [hmaxAn : n 2 Ni]. A standard set is

internal. The set [h[0; n] : n 2 Ni] is internal but not standard. �}(R) is the collection

of all internal subsets of �R.

The structure �V is not only an extension of V, but also has many other nice

properties.

Logical formulas: Let x; y; : : : denote variables. Let p; q; r be either the variables or

the elements, called constants, in �V. Then the following are called atomic formulas:

p = q, p+ q = r, pq = r, p 6 q, p 2 q and jpj = q.

The meaning of these atomic formulas in �V should be self-clear. For example,

p 2 q means p is a number, q is a set and p is a member of q. When the constants in

an atomic formula are all standard elements, the truth of the formula in V is same

as the truth of the formula in �V.

Starting from those atomic formulas, one can form all (logical) formulas according

to the following three recursive rules.

(1) If ' is a formula, so is :'.

(2) If ' and  are formulas, so is ' ^  .

(3) If ' is a formula, so is 9x' where x can be any variable.

The symbol : stands for \not", ^ stands for \and" and 9x stands for \there exists

an x such that...". Note that the interpretations of 9x in V and in �V are di�erent.

The meaning of 9x in V is \there exists an x in V such that : : :" while the meaning

in �V is \there exists an x in �V such that : : :". In the formula 9x', ' is called the

scope of the quanti�er 9x. An occurrence of a variable y in a formula ' is called

free if the occurrence is not within the scope  of 9y for any subformula 9y in '.

The symbols _ (stands for \or"), ! (stands for \imply"),$ (stands for \i�") and 8

(stands for \for every") can also be used in logical formulas. Those symbols can be

expressed using :, ^ and 9 as the following:

' _  is equivalent to :(:' ^ : ),

'!  is equivalent to :' _  ,

'$  is equivalent to ('!  ) ^ ( ! '),

8x' is equivalent to :9x:'.

The symbols \ (stands for \intersect"), [ (stands for \union"), r (stands for \set-

subtract") can also be used in a formula as the abbreviations. For example, p 2 q \ r

is equivalent to (p 2 q)^ (p 2 r). The symbols � (stands for \number subtract") and
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= (stands for \divide") can be expressed as: p � q = r i� q + r = p and p=q = r i�

(:q = 0) ^ qr = p.

Claim Every mathematical statement in the theorems, propositions and lemmas of

this paper can be expressed by a logical formula de�ned above.

For example, the statement \�(A) > �" in V can be expressed as

8x(x 2 N^:x = 0! 8y(8z(8u(1 6 u^u 6 x$ u 2 z)! y = jA\zj)! � 6 y=x)):

Proposition 1 Let v(1); : : : ; v(k) 2 �V and let ' = '(v(1); : : : ; v(k)) be a formula such

that it contains no free variables and v(1); : : : ; v(k) are only constants in it. Then ' is

true in �V i�

fn 2 N : '(v(1)n ; : : : ; v(k)n ) is true in Vg 2 U

where v(i) = [hv(i)n : n 2 Ni].

Note that it makes no sense to speak about the truth of a formula in V when the

formula contains some constants in �V rV.

Proof: We prove the proposition by induction on the complexity of the formulas.

It is easy to check that the proposition is true for any atomic formula. Suppose the

proposition is true for  and �.

If '(v(1); : : : ; v(k)) is  (v(1); : : : ; v(k)) ^ �(v(1); : : : ; v(k)), then ' is true in �V i�  

is true in �V and � is true in �V i�

fn : '(v(1)n ; : : : ; v(k)n ) is true in Vg =

fn :  (v(1)n ; : : : ; v(k)n ) is true in Vg \ fn : �(v(1)n ; : : : ; v(k)n ) is true in Vg 2 U :

If '(v(1); : : : ; v(k)) is : (v(1); : : : ; v(k)), then ' is true in �V i�  is not true in �V

i� fn :  (v
(1)
n ; : : : ; v

(k)
n ) is true in Vg 62 U i�

fn : '(v(1)n ; : : : ; v(k)n ) is true in Vg = Nr fn :  (v(1)n ; : : : ; v(k)n ) is true in Vg 2 U :

Suppose '(v(1); : : : ; v(k)) is 9x (x; v(1); : : : ; v(k)). Then ' is true in �V implies that

there is a v 2 �V such that  (v; v(1); : : : ; v(k)) is true in �V which implies

fn :  (vn; v
(1)
n ; : : : ; v(k)n ) is true in Vg 2 U :
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Hence

fn : 9x (x; v(1)n ; : : : ; v(k)n ) is true in Vg 2 U :

On the other hand,

U = fn : 9x (x; v(1)n ; : : : ; v(k)n ) is true in Vg 2 U

implies that for each n 2 U , there exists a vn 2 V such that  (vn; v
(1)
n ; : : : ; v

(k)
n ) is

true in V. Let vn = 0 for each n 2 N r U and let v = [hvn : n 2 Ni]. Then

 (v; v(1); : : : ; v(k)) is true in �V. Hence 9x (x; v(1); : : : ; v(k)) is true in �V. 2

Proposition 2 Let '(a1; : : : ; am; A1; : : : ; An) be a formula such that a1; : : : ; am 2 R

and A1; : : : ; An � R are only constants in ' and ' contains no free variables. Then

'(a1; : : : ; am; A1; : : : ; An) is true in V i� '(a1; : : : ; am;
�A1; : : : ;

�An) is true in �V.

Proof Again by induction. It is easy to check that the proposition is true for every

atomic formula. Suppose the proposition is true for  and �.

If '(a1; : : : ; am; A1; : : : ; An) is  (a1; : : : ; am; A1; : : : ; An)^�(a1; : : : ; am; A1; : : : ; An),

then ' is true in V i�  is true in V and � is true in V i�  (a1; : : : ; am;
�A1; : : : ;

�An)

is true in �V and �(a1; : : : ; am;
�A1; : : : ;

�An) is true in
�V i�

'(a1; : : : ; am;
�A1; : : : ;

�An) =  (a1; : : : ; am;
�A1; : : : ;

�An) ^ �(a1; : : : ; am;
�A1; : : : ;

�An)

is true in �V.

If '(a1; : : : ; am; A1; : : : ; An) is : (a1; : : : ; am; A1; : : : ; An), then ' is true in V i�

 is not true in V i�  (a1; : : : ; am;
�A1; : : : ;

�An) is not true in
�V i�

'(a1; : : : ; am;
�A1; : : : ;

�An) = : (a1; : : : ; am;
�A1; : : : ;

�An)

is true in �V.

Suppose '(a1; : : : ; am; A1; : : : ; An) is 9x (x; a1; : : : ; am; A1; : : : ; An). ' is true in

V implies that there is an a 2 V (a could be either a number or a set.) such that

 (a; a1; : : : ; am; A1; : : : ; An) is true in V which implies  (�a; a1; : : : ; am;
�A1; : : : ;

�An)

is true in �V. Hence '(a1; : : : ; am;
�A1; : : : ;

�An) is true in
�V. On the other hand, if

'(a1; : : : ; am;
�A1; : : : ;

�An) is true in �V, then there is a v 2 �V such that

 (v; a1; : : : ; am;
�A1; : : : ;

�An) is true in
�V. By Proposition 1,

U = fn :  (vn; a1; : : : ; am; A1; : : : ; An) is true in Vg 2 U :
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Since U 6= ;, there is an vn 2 V such that  (vn; a1; : : : ; am; A1; : : : ; An) is true in V.

Hence ' is true in V. 2

Proposition 2 is called the transfer principle.

Proposition 3 Let '(x; v(1); : : : ; v(k)) be a formula such that v(1); : : : ; v(k) 2 �V and

x is the only free variable. Then the set fa 2 �R : '(a; v(1); : : : ; v(k)) is true in �Vg

is internal.

Proof For each n 2 N, let An = f� 2 R : '(�; v
(1)
n ; : : : ; v

(k)
n ) is true in Vg � R.

Let A = [hAn : n 2 Ni]. Then A is an internal set. We leave to the reader to check

that

A = fa 2 �R : '(a; v(1); : : : ; v(k)) is true in �Vg: 2

Proposition 4 Suppose fA(k) : k 2 Ng is a collection of non-empty internal sets

such that A(1) � A(2) � : : : � A(k) � : : :. Then there is an v 2 �V such that v 2 A(k)

for every k 2 N.

Proof For convenience, let A(0) = �V. For each k, pick a v(k) 2 A(k) and let

Uk = fn 2 N : v(k)n 2 A(k)
n � A(k�1)

n � � � � � A(0)
n gr [0; k]:

By Proposition 1, Uk 2 U . It is also clear that \1k=0Uk = ;. For each n 2 N, let

kn = maxfk : n 2 Ukg and de�ne v
(H)
n = v

(kn)
n . Let v(H) = [hv(H)

n : n 2 Ni] 2 �V.

Claim: v(H) 2 A(k) for every k 2 N.

Given a k 2 N, it su�ces to show that fn : v
(H)
n 2 A

(k)
n g � Uk. For each n 2 Uk,

kn > k by the maximality of kn and n 2 Ukn . So v
(H)
n = v

(kn)
n 2 A

(kn)
n � A

(k)
n . Hence

Uk � fn : v(H)
n 2 A(k)

n g. 2

Proposition 4 is called the countable saturation property.

Loeb spaces: Given a hyper�nite integer H, 
 = [0; H � 1] is a hyper�nite set. Let

A � 
 be an internal set. Then jAj is an integer between 0 and H. Hence jAj=H is

a number in �R between 0 and 1. By the completeness of R, one can �nd a unique

standard real number � between 0 and 1 such that jAj=H is in�nitesimally close to

�. Let's call � the standard part of jAj=H denoted by st(jAj=H) = �. (In fact, st is

de�ned on every number r in �R as long as r is between two standard real numbers.)

Let �0 be the collection of all internal subsets of 
 and let �(A) = st(jAj=H) for every
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A 2 �0. Then (
;�0; �) is a �nitely-additive probability space from the standard

point of view. For any subset S of 
, internal or external, de�ne

��(S) = inff�(A) : A 2 �0 and A � Sg

�(S) = supf�(A) : A 2 �0 and A � Sg

and let

� = fS � 
 : ��(S) = �(S)g:

It is easy to see that �0 � �. For each S 2 �, de�ne �L(S) = ��(S) = �(S). Then

(
;�; �L) is a standard, countably-additive, atomless, complete probability space,

which is called a hyper�nite Loeb space generated by a normalized uniform counting

measure j � j=H. Let's call it simply a Loeb space on [0; H � 1]. Note that the Loeb

space construction can be carried out on any hyper�nite set instead of [0; H�1]. The

reader should notice that the veri�cation of the countable-additivity requires using

Proposition 4. Loeb space is a very important tool for applying nonstandard analysis

to other �elds of mathematics, especially to probability theory (see [1]).

3 Proofs

We introduce Birkho� ergodic theorem (see, for example, [14, page 30] or [3, page 59])

and prove several lemmas before proving the theorems. Let (
;�; �) be a probability

space. A bijection T from 
 to 
 is called a measure-preserving transformation if

both T and T�1 are measurable and �(E) = �(T [E]) for every measurable set E 2 �.

Let T 0 be the identity function. For any n 2 N+, let T
n(x) = T (T n�1(x)).

Birkho� Ergodic Theorem Suppose (
;�; �) is a probability space and T is a

measure-preserving transformation from 
 to 
. For any function f 2 L1(
), there

exists a function �f 2 L1(
) such that

�(fx 2 
 : lim
n!1

1

n

n�1X

m=0

f(Tm(x)) = �f(x)g) = 1:

Lemma 1 Let � be a real number. For any set A � N, BD(A) > � i� there is an

in�nitesimal � > 0 and an interval I = [H;K] � �N of hyper�nite length such that

�A(H;K)

K �H + 1
> �� �:

12



Proof \)": Assume BD(A) > �. Let '(�;N; A) be the statement \for every x in

N+, there exists a; b in N such that b� a > x and A(a;b)
b�a+1

> �� 1
x
". Then '(�;N; A)

is true in V. By Proposition 2, '(�;�N;�A) is true in �V. Hence one can choose a

hyper�nite integer in �N for x and the proof is done.

\(": Assume
�A(H;K)
K�H+1

> ���. For each n 2 N, let '(n; �;�N;�A) be the statement

\there exists x; y 2 �N such that y � x > n and
�A(x;y)
y�x+1

> � � 1
n
". Since x = H and

y = K witness the truth of '(n; �;�N;�A), '(n; �;N; A) is true in V for each n 2 N

again by Proposition 2. Hence BD(A) > �. 2

For each internal set C � �Z, we de�ne d(C) = d(C\N). We also do the same for

� and BD. Keep in mind that the de�nitions of d(C), �(C) and BD(C) involve only

the part of C in N although C may contain hyper�nite integers or negative integers.

Lemma 2 Suppose A � N and BD(A) = �. Then there is an interval of hyper�nite

length [H;K] such that for almost all x 2 [H;K] in terms of the Loeb measure �L on

[H;K], d(�A�x) = �. On the other hand, if A � N and there is an a 2 �N such that

d(�A� a) > �, then BD(A) > �.

Proof Suppose BD(A) = �. By Lemma 1, there is an interval of hyper�nite length

[H;K] such that
�A(H;K)
K�H+1

is in�nitesimally close to �. Hence, the Loeb measure of

the set �A(H;K) in [H;K] is �. Let T be the map from [H;K] to [H;K] such that

T (K) = H and T (x) = x + 1 for every x 2 [H;K � 1]. Then T is a Loeb measure-

preserving transformation. Let f be the characteristic function of the set �A(H;K).

By Birkho� ergodic theorem there is a measurable function �f such that for almost

all x 2 [H;K],

lim
n!1

1

n

n�1X

m=0

f(Tm(x)) = �f(x):

Since the integration over [H;K] of the left-side is �, then
R
[H;K]

�fd�L = �. We want

to show that �f(x) = � almost surely. Note that the set \1n=0[H;K � n] has Loeb

measure 1.

Suppose there is an a 2 \1n=0[H;K � n] such that

lim
n!1

1

n

n�1X

m=0

f(Tm(a)) = � > �:

The interpretation of the above limit shows that
�A(a;a+n)

n+1
> �+�

2
for n large enough.

Let D be the set of all those b's in �N such that
�A(a;a+b)

b+1
> �+�

2
. By Proposition 3, D
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is an internal subset of �N which contains all large enough n in N. Since N r [0; n]

is not internal in �V for every n 2 N, there is a hyper�nite integer L in D. Hence
�A(a;a+L)

L+1
> �+�

2
. By Lemma 1, BD(A) > �+�

2
> �. This contradicts BD(A) = �.

Suppose �L(fx 2 [H;K] : �f(x) < �g) > 0. Then
R
[H;K]

�f(x)d�L = � implies that

�L(fx 2 [H;K] : �f(x) > �g) > 0. Hence there exists an a 2 \1n=0[H;K � n] such

that

lim
n!1

1

n

n�1X

m=0

f(Tm(a)) > �:

Now a contradiction can be derived by the same reason in the paragraph above.

The �rst half of the lemma is proven by the fact that

lim
n!1

1

n

n�1X

m=0

f(x+m)) = �

implies d(�A� x) = �.

The proof of the second half of the lemma is in fact included in the second para-

graph of the proof of the �rst half. 2

Given a set A � N and an interval [a; b] � N. Let

�[a;b](A) = inf
a6m6b

A(a;m)

m� a+ 1

and let

BSD(A) = lim
n!1

sup
06a6b;b�a=n

�[a;b](A):

Let's call BSD(A) the Banach-Shnirel'man density of A. Clearly, BSD(A) 6 BD(A).

Lemma 3 Let � be a real number. For any set A � N, BSD(A) > � i� there is an

in�nitesimal � > 0 and an interval [H;K] � �N of hyper�nite length such that

inf
H6L6K

�A(H;L)

L�H + 1
> �� �:

Proof The proof is similar to the proof of Lemma 1. I leave the proof to the reader.

2

Lemma 4 Let A � N. Then BSD(A) > � i� there exists an a 2 �N such that

�(�A� a+ 1) > �:
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Proof The proof of the lemma is also similar to the proof of Lemma 2.

\)": Assume BSD(A) > �. By Proposition 2, there exists an interval [H;K] of

hyper�nite length such that

inf
H6L6K

�A(H;L)

L�H + 1
> �� �

for some in�nitesimal �. It is easy to see now that �(�A�H + 1) > �.

\(": Assume �(�A�a+1) > �. Then by Proposition 3, there exists a hyper�nite

integer H such that

inf
06L6H

�A(a; a + L)

L + 1
> �:

Certainly � > �� � for any � > 0. The conclusion follows from Lemma 3. 2

Lemma 5 Let A � N be such that d(A) = � and � > 0. Then there is an n0 2 N

such that �(A� n0) > �� �.

Proof Suppose the lemma is not true. Then one can �nd a strictly increasing

sequence of natural numbers hin : n 2 Ni such that A(in;in+1�1)
in+1�in

6 �� �. This implies

d(A) 6 �� � which contradicts d(A) = �. 2

Lemma 6 Let A � N. Then BD(A) = BSD(A).

Proof Clearly, BSD(A) 6 BD(A). Given any � > 0, it su�ces to show that

BSD(A) > BD(A)� �.

Let BD(A) = �. By Lemma 2, there is an x 2 �N such that d(�A � x) = �. By

Lemma 5, one can �nd a y 2 �N, y > x such that �(�A � y) > � � �. By Lemma 4,

one has BSD(A) > �� �. 2

Now we are ready to prove the theorems stated in x1.

Proof of Theorem 1 Suppose BD(A) = � > 0. Since gcd(A � a0) = 1, there

exists an h0 2 N+ such that h0(A � a0) contains two consecutive numbers. Hence

the set h0A contains two consecutive numbers c; c + 1. By Lemma 6 and Lemma 4,

there is an x 2 �N, such that �(�A� x + 1) = �. Note that x 2 �A. Now

�((1 + h0)
�A� x� c) > �(�A+ fc; c+ 1g � x� c) > �(�A� x + 1) = �

and

0 = x + c� x� c 2 (1 + h0)
�A� x� c:

15



By Shnirel'man's theorem, there is an h1 2 N+ such that

h1((1 + h0)
�A� x� c) = h1(1 + h0)

�A� h1(x+ c) � N:

By Proposition 3, there is a hyper�nite integer H such that

h1(1 + h0)
�A� h1(x + c) � [0; H]:

Let h = h1(1 + h0). Then

�(hA) = h�A � [h1(x+ c); h1(x + c) +H]:

By Lemma 1, BD(hA) = 1. 2

Proof of Theorem 2 The proof of Theorem 2 needs Besicovitch's theorem [4,

page 6], which says if 1 2 A, 0 2 B and � is a non-negative real number such that

infn>1
B(n)
n+1

> �, then

�(A+B) > minf�(A) + �; 1g:

Let BD(A) = � and BD(B) = �. Without loss of generality, let's assume � 6 �

and � + � 6 1. Hence � 6 1
2
. By Lemma 6 and Lemma 4, there exist a 2 �A and

b 2 �B such that �(�A � a + 1) = � and �(�B � b + 1) = �. Let B0 = B + f0; 1g.

Clearly, 1 2 �A� a + 1 and 0 2 �B0 � b. We want to check that

inf
n>1

(�B0 � b)(n)

n+ 1
> �:

Let

k0 = minfn 2 N : n 62 �B0 � bg

and let

k1 = minfn 2 N : n > k0 and n 2
�B � b+ 1g:

Obviously, 1 < k0 < k1 � 1. Let n 2 N+.

Case 1: 1 6 n < k0. Then (�B0 � b)(n) = n > 1
2
(n+ 1) > �(n+ 1).

Case 2: k0 6 n < k1 � 1. Then

(�B0 � b)(n) > (�B � b + 1)(n) = (�B � b+ 1)(n+ 1) > �(n+ 1):

This is because �(�B � b+ 1) = �.
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Case 3: n > k1 � 1. Then because k1 � 1 2 (�B0 � b)r (�B � b + 1), one has

(�B0 � b)(n) > (�B � b + 1)(n) + 1 > �n+ 1 > �(n+ 1):

Following above three cases, we conclude

inf
n>1

(�B0 � b)(n)

n+ 1
> �:

Applying Besicovitch's theorem, we have

�((�A� a+ 1) + (�B0 � b)) = �((�A+ �B0)� (a+ b� 1)) > � + �:

By Lemma 4 and �A +�B0 = �(A+B0), one has

BSD(A+ B + f0; 1g) = BSD(A+B0) > �+ �:

And by Lemma 6, one has

BD(A+ B + f0; 1g) = BD(A+B0) > � + �: 2

Proof of Theorem 3 Let B be a piecewise basis of piecewise order h. Let

h[an; bn] : n 2 Ni be a sequence of intervals such that lim1

n=0(bn � an) =1 and

h((B � an) \N) + an � [an; bn]

for n 2 N. Let '(h;B;N) be the statement \for every x 2 N, there exist y and

z in N such that z � y > x and h((B � y) \ N) + y � [y; z]". By Proposition

2, '(h;�B;�N) is true in �V. Let x be a hyper�nite integer. Then there exists an

interval [H;K] of hyper�nite length such that h((�B � H) \ �N) + H � [H;K] or

h((�B � H) \ �N) � [0; K � H]. This shows h((�B � H) \N) = N. Let A � N be

such that BD(A) = �. By Lemma 6 and Lemma 4, there exists an a 2 �A such that

�(�A�a+1) = �. By Pl�unnecke's theorem, �((�A�a+1)+(�B�H)) > �1� 1

h . Then,

by Lemma 6,

BD(A +B) > �((�A+ �B � (a +H � 1))) = �((�A� a+ 1) + (�B �H)):

So we conclude that

BD(A+B) > BD(A)1�
1

h : 2
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Proof of Theorem 4 LetB be a piecewise asymptotic basis of piecewise asymptotic

average order h�pa. Given � > 0, there exists a suitable sequence I of intervals and a

k 2 N such that

h�pa +
�

2
> h�

I;k:

By Proposition 2, there exists an interval [H;K] of hyper�nite length such that

sup
H+k6L6K

1

L�H � k + 1

LX

i=H+k

h[H;K](i) 6 h�
I;k +

�

2

where h[H;K](i) = minfh0 2 �N : i 2 h0((�B � H) \ �N) + H)g. Obviously, the

asymptotic average order �h of the asymptotic basis (�B �H) \N satis�es

�h 6 h�
I;k +

�

2
6 h�pa + �:

Let BD(A) = �. Then by Lemma 2, there exists an a 2 �N such that d(�A� a) = �.

Applying Rohrbach's theorem, we have

d((�A� a) + (�B �H)) = d((�A + �B)� (a+H)) > � +
1

2(h�pa + �)
�(1� �):

By Lemma 1, we have

BD(A+B) > BD(A) +
1

2(h�pa + �)
BD(A)(1� BD(A)):

Since � can be arbitrarily small, the conclusion follows. 2

4 Comments

(1) The main goal of this paper is not just for supplying the proofs to the theorems

in x1. In fact, the whole procedure of producing the proofs reveals a general method,

using nonstandard analysis, of deriving a result about upper Banach density parallel

to each existing result about lower asymptotic density or Shnirel'man density in an

extremely e�cient way. Given a set A with BD(A) > �, there is a copy of N in

a remote area where �A has lower asymptotic density or Shnirel'man density �. By

applying the existing theorem about lower asymptotic density or Shnirel'man density,

one can obtain a result on that area. Then one can pull the result down to the standard

world to obtain the parallel result.
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(2) There are other papers using nonstandard analysis to study the sequences of

natural numbers. See [8], [9], [10] and [7] for example. In [7], one of the consequences

of the main nonstandard result is in additive number theorem. The consequence,

suggested to me by S. Leth, says that for any A;B � N with BD(A) > 0 and

BD(B) > 0, the set A + B is piecewise syndetic. A set S � N is piecewise syndetic

if S + [0; k] is thick for some k 2 N. This consequence is interesting because it is a

special case of a general phenomenon which says that if A and B are large in terms of

\measure", then A+B is not small in terms of \order-topology". The consequence is

interesting also because it complements a result which says that if BD(A) > 0, then

A� A = fa� a0 : a; a0 2 A and a0 6 ag is syndetic [3, page 75, Proposition 3.19]. A

set S � N is syndetic if S + [0; k] � Nr [0; n] for some k; n 2 N.

(3) Our development of the nonstandard analysis in x2 is very restrictive. The

guideline I followed is that I should provide, as concrete as possible, only necessary

background of nonstandard analysis for the proofs of this paper. For broader appli-

cations in other mathematical �elds, one may need more than that in x2. (a) One

can use other ways instead of ultrapower construction to construct a nonstandard

model. One can also construct an ultrapower by using a nonprincipal ultra�lter on a

larger set I instead of on N. (b) The standard model may contain much more that

V de�ned in x2. Nonstandard analysts usually take the standard model V to be the

standard superstructure de�ned as the following. Let V0 = R [ X where X is any

needed set, and Vn+1 = Vn [ }(Vn). Then V = ([1n=0Vn;2). From this V, one can

construct the nonstandard model �V as, for example, an ultrapower of V. Note that

the functions such as +, � and j � j, and relations such as 6 and 2 can be viewed

as elements in V. (c) I deliberately blurred the distinction between syntax and se-

mantics of the logical formulas in order to reduce the hard-ness for the reader with

no logic background. We rely heavily on the reader's common-sense understanding

of the truth of a formula in a model. The rigorous treatment can be found in any

�rst-year logic course textbook.
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